A new drought index and its application based on geographically weighted regression (GWR) model and multi-source remote sensing data

被引:10
|
作者
Wei, Wei [1 ]
Zhang, Xing [1 ]
Liu, Chunfang [2 ,3 ]
Xie, Binbin [4 ]
Zhou, Junju [1 ]
Zhang, Haoyan [1 ]
机构
[1] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou 730070, Gansu, Peoples R China
[2] Northwest Normal Univ, Coll Social Dev & Publ Adm, Lanzhou 730070, Gansu, Peoples R China
[3] Gan Engn Res Ctr Land Utilizat & Comprehens Conso, Lanzhou 730070, Gansu, Peoples R China
[4] Lanzhou City Univ, Sch Urban Management, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Drought monitoring; Spatiotemporal data mining; Geographically weighted regression; Hot spot analysis; China; AGRICULTURAL DROUGHT; UNITED-STATES; SEVERITY INDEX; VEGETATION; SATELLITE; PRECIPITATION; ASSOCIATION; TEMPERATURE; DISTANCE; MOISTURE;
D O I
10.1007/s11356-022-23200-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is the most widespread natural disaster in the world. How to monitor regional drought scientifically and accurately has become a hot topic for many scholars. In this paper, Geographically Integrated Dryness Index (GIDI) was integrated from an assortment source including Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), Vegetation Condition Index (VCI), and Standardized Precipitation Evapotranspiration Index (SPEI) (as the dependent variable) based on geographically weighted regression method. Besides, the comprehensive drought situation and changing trends in China from 2001 to 2019 were also examined. The results showed that (1) GIDI has excellent performance in monitoring medium- and long-term droughts and the monitoring results shows 2003, 2016, and 2019 were relatively wet years, while 2007, 2009, and 2011 were major drought years, and spring and March were the most frequent droughts season and month, respectively, and (2) except for the middle and upper reaches of the Yellow River and Northeastern China, which have a tendency to become wet, other places have a tendency to fluctuating dry. This study took advantage of simple and efficient methods to integrate existing indices to obtain a new index for monitoring a wider range of droughts, taking into account the physical mechanism of drought formation and the time scale of drought development, so it can scientifically evaluate the spatial and temporal distribution characteristics of drought and changes.
引用
收藏
页码:17865 / 17887
页数:23
相关论文
共 50 条
  • [1] A new drought index and its application based on geographically weighted regression (GWR) model and multi-source remote sensing data
    Wei Wei
    Xing Zhang
    Chunfang Liu
    Binbin Xie
    Junju Zhou
    Haoyan Zhang
    Environmental Science and Pollution Research, 2023, 30 : 17865 - 17887
  • [2] A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning
    Chen, Hao
    Yang, Ni
    Song, Xuanhua
    Lu, Chunhua
    Lu, Menglan
    Chen, Tan
    Deng, Shulin
    AGRICULTURAL WATER MANAGEMENT, 2025, 308
  • [3] A Random Forest Model for Drought: Monitoring and Validation for Grassland Drought Based on Multi-Source Remote Sensing Data
    Wang, Qian
    Zhao, Lin
    Wang, Mali
    Wu, Jinjia
    Zhou, Wei
    Zhang, Qipeng
    Deng, Meie
    REMOTE SENSING, 2022, 14 (19)
  • [4] Parameter Estimation of Geographically Weighted Regression (GWR) Model Using Weighted Least Square and Its Application
    Soemartojo, Saskya Mary
    Ghaisani, Rima Dini
    Siswantining, Titin
    Shahab, Mariam Rahmania
    Ariyanto, Moch. Muchid
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [5] Construction of a drought monitoring model using deep learning based on multi-source remote sensing data
    Shen, Runping
    Huang, Anqi
    Li, Bolun
    Guo, Jia
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 79 : 48 - 57
  • [6] Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data
    Wei, Wei
    Wang, Jiping
    Ma, Libang
    Wang, Xufeng
    Xie, Binbin
    Zhou, Junju
    Zhang, Haoyan
    LAND, 2024, 13 (01)
  • [7] Multi-source geographically weighted regression for regionalized ground-motion models
    Caramenti, Luca
    Menafoglio, Alessandra
    Sgobba, Sara
    Lanzano, Giovanni
    SPATIAL STATISTICS, 2022, 47
  • [8] Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data
    Qin, Zhen
    Yang, Huanfen
    Shu, Qingtai
    Yu, Jinge
    Xu, Li
    Wang, Mingxing
    Xia, Cuifen
    Duan, Dandan
    FORESTS, 2024, 15 (07):
  • [9] Drought Monitoring of Winter Wheat in Henan Province, China Based on Multi-Source Remote Sensing Data
    Tian, Guizhi
    Zhu, Liming
    AGRONOMY-BASEL, 2024, 14 (04):
  • [10] Monitoring of Extreme Drought in the Yangtze River Basin in 2022 Based on Multi-Source Remote Sensing Data
    Yu, Mingxiao
    He, Qisheng
    Jin, Rong
    Miao, Shuqi
    Wang, Rong
    Ke, Liangliang
    WATER, 2024, 16 (11)