Automated grape leaf nutrition deficiency disease detection and classification Equilibrium Optimizer with deep transfer learning model

被引:0
|
作者
Bajait, Vaishali [1 ,2 ]
Malarvizhi, Nandagopal [1 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept CSE, Chennai, India
[2] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept CSE, Chennai 600062, India
关键词
Deep learning; equilibrium optimizer; image preprocessing; adaptive Bilateral filter; feature extraction; stacked auto encoder; plant disease dataset; transfer learning;
D O I
10.1080/0954898X.2023.2275722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our approach includes picture preprocessing, feature extraction utilizing the SqueezeNet model, hyperparameter optimisation utilising the Equilibrium Optimizer (EO) algorithm, and classification utilising a Stacked Autoencoder (SAE) model. Each of these processes is carried out in a series of separate steps. During the image preprocessing stage, contrast limited adaptive histogram equalisations (CLAHE) is utilized to improve the contrasts, and Adaptive Bilateral Filtering (ABF) to get rid of any noise that may be present. The SqueezeNet paradigm is utilized to obtain relevant characteristics from the pictures that have been preprocessed, and the EO technique is utilized to fine-tune the hyperparameters. Finally, the SAE model categorises the diseases that affect the grape leaf. The simulation analysis of the EODTL-GLDC technique tested New Plant Diseases Datasets and the results were inspected in many prospects. The results demonstrate that this model outperforms other deep learning techniques and methods that are more often related to machine learning. Specifically, this technique was able to attain a precision of 96.31% on the testing datasets and 96.88% on the training data set that was split 80:20. These results offer more proof that the suggested strategy is successful in automating the detection and categorization of grape leaf diseases.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 50 条
  • [1] A novel deep learning model for cabbage leaf disease detection and classification
    Girmaw, Dagne Walle
    Salau, Ayodeji Olalekan
    Mamo, Bayu Shimels
    Molla, Tibebu Legesse
    DISCOVER APPLIED SCIENCES, 2024, 6 (10)
  • [2] A novel transfer deep learning method for detection and classification of plant leaf disease
    Kaur P.
    Harnal S.
    Gautam V.
    Singh M.P.
    Singh S.P.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (09) : 12407 - 12424
  • [3] Improved optimizer with deep learning model for emotion detection and classification
    Joseph, Willson C.
    Kathrine, G. Jaspher Willsie
    Shanmuganathan, Vimal
    Sumathi, S.
    Pelusi, Danilo
    Valencia, Xiomara Patricia Blanco
    Verdú, Elena
    Mathematical Biosciences and Engineering, 2024, 21 (07) : 6631 - 6657
  • [4] Transfer Learning-Based Deep Learning Model for Corn Leaf Disease Classification
    An, Justin
    Zhang, Nian
    Mahmoud, Wagdy H.
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 163 - 173
  • [5] Deep transfer learning driven model for mango leaf disease detection
    Singh, Yogendra Pratap
    Chaurasia, Brijesh Kumar
    Shukla, Man Mohan
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (10) : 4779 - 4805
  • [6] A hybrid deep learning model approach for automated detection and classification of cassava leaf diseases
    G. Sambasivam
    G. Prabu kanna
    Munesh Singh Chauhan
    Prem Raja
    Yogesh Kumar
    Scientific Reports, 15 (1)
  • [7] A Novel Classification Approach for Grape Leaf Disease Detection Based on Different Attention Deep Learning Techniques
    Praveen, S. Phani
    Nakka, Rajeswari
    Chokka, Anuradha
    Thatha, Venkata Nagaraju
    Vellela, Sai Srinivas
    Sirisha, Uddagiri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1199 - 1209
  • [8] Detection of Leaf Disease Using Deep Learning A Deep Learning Based for Automated Detection.
    Agusthiyar, R.
    Devi, Shyamala J.
    Saravanabhavan, N. M.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (06): : 34 - 38
  • [9] Leveraging Gradient-Based Optimizer and Deep Learning for Automated Soil Classification Model
    Alsolai, Hadeel
    Rizwanullah, Mohammed
    Maashi, Mashael
    Othman, Mahmoud
    Alneil, Amani A.
    Abdelmageed, Amgad Atta
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 975 - 992
  • [10] Grape leaf image classification based on machine learning technique for accurate leaf disease detection
    M. Shantkumari
    S. V. Uma
    Multimedia Tools and Applications, 2023, 82 : 1477 - 1487