Density-potential inversion from Moreau-Yosida regularization

被引:4
|
作者
Penz, Markus [1 ]
Csirik, Mihaly A. [2 ,3 ]
Laestadius, Andre [2 ,3 ]
机构
[1] Basic Res Community Phys, Innsbruck, Austria
[2] Oslo Metropolitan Univ, Dept Comp Sci, Oslo, Norway
[3] Univ Oslo, Hylleraas Ctr Quantum Mol Sci, Dept Chem, Oslo, Norway
来源
ELECTRONIC STRUCTURE | 2023年 / 5卷 / 01期
基金
欧洲研究理事会;
关键词
density-functional theory; Zhao-Morrison-Parr method; Moreau-Yosida regularization; Kohn-Sham theory; density-potential inversion; EXCHANGE-CORRELATION POTENTIALS; WAVE-FUNCTIONS; FUNCTIONALS;
D O I
10.1088/2516-1075/acc626
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For a quantum-mechanical many-electron system, given a density, the Zhao-Morrison-Parr method allows to compute the effective potential that yields precisely that density. In this work, we demonstrate how this and similar inversion procedures mathematically relate to the Moreau-Yosida regularization of density functionals on Banach spaces. It is shown that these inversion procedures can in fact be understood as a limit process as the regularization parameter approaches zero. This sheds new insight on the role of Moreau-Yosida regularization in density-functional theory and allows to systematically improve density-potential inversion. Our results apply to the Kohn-Sham setting with fractional occupation that determines an effective one-body potential that in turn reproduces an interacting density.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A PROPERTY OF THE MOREAU-YOSIDA REGULARIZATION
    Hamamdjiev, Mihail
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (02): : 161 - 168
  • [2] A generalization of the Moreau-Yosida regularization
    Bacho, Aras
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (02)
  • [3] Moreau-Yosida regularization in shape optimization with geometric constraints
    Keuthen, Moritz
    Ulbrich, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (01) : 181 - 216
  • [4] Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization
    Meng, FW
    Sun, DF
    Zhao, GY
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 561 - 581
  • [5] Lagrangian-dual functions and Moreau-Yosida regularization
    Meng, Fanwen
    Zhao, Gongyun
    Goh, Mark
    De Souza, Robert
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 39 - 61
  • [6] Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization
    Fanwen Meng
    Defeng Sun
    Gongyun Zhao
    Mathematical Programming, 2005, 104 : 561 - 581
  • [7] Practical aspects of the Moreau-Yosida regularization: Theoretical preliminaries
    Lemarechal, C
    Sagastizabal, C
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (02) : 367 - 385
  • [8] A MOREAU-YOSIDA REGULARIZATION OF A DIFFERENCE OF TWO CONVEX FUNCTIONS
    Hamdi, Abdelouahed
    APPLIED MATHEMATICS E-NOTES, 2005, 5 : 164 - 170
  • [9] A Nonconvex Proximal Splitting Algorithm under Moreau-Yosida Regularization
    Laude, Emanuel
    Wu, Tao
    Cremers, Daniel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [10] Moreau-Yosida Regularization of Maximal Monotone Operators of Type (D)
    Alves, Maicon Marques
    Svaiter, Benar Fux
    SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (01) : 97 - 106