Data-driven virtual sensor for online loads estimation of drivetrain of wind turbines

被引:0
|
作者
Kamel, Omar [1 ,2 ]
Kretschmer, Matthias [2 ]
Pfeifer, Stefan [2 ]
Luhmann, Birger [2 ]
Hauptmann, Stefan [2 ]
Bottasso, Carlo L. [1 ]
机构
[1] Tech Univ Munich, Chair Wind Energy, Munich, Germany
[2] MesH Engn GmbH, Stuttgart, Germany
来源
关键词
D O I
10.1007/s10010-023-00615-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-driven approaches have gained interest recently in the field of wind energy. Data-driven online estimators have been investigated and demonstrated in several applications such as online loads estimation, wake center position estimations, online damage estimation. The present work demonstrates the application of machine learning algorithms to formulate an estimator of the internal loads acting on the bearings of the drivetrain of onshore wind turbines. The loads estimator is implemented as a linear state-space model that is augmented with a non-linear feed-forward neural network. The estimator infers the loads time series as a function of the standard measurements from the SCADA and condition monitoring systems (CMS). A formal analysis of the available data is carried out to define the structure of the virtual sensor regarding the order of the models, number of states, architecture of neural networks. Correlation coefficient of 98% in the time domain and matching of the frequency signature are achieved. Several applications are mentioned and discussed in this work such as online estimation of the forces for monitoring and model predictive control applications.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [1] Data-driven virtual sensor for online loads estimation of drivetrain of wind turbines; [Datengetriebener virtueller Sensor für die Online Abschätzung der Lasten im Antriebsstrang von Windkraftanlagen]
    Kamel O.
    Kretschmer M.
    Pfeifer S.
    Luhmann B.
    Hauptmann S.
    Bottasso C.L.
    Forschung im Ingenieurwesen, 2023, 87 (1) : 31 - 38
  • [2] Data-driven Online Monitoring of Wind Turbines
    Kenbeek, Thomas
    Kapodistria, Stella
    Di Bucchianico, Alessandro
    PROCEEDINGS OF THE 12TH EAI INTERNATIONAL CONFERENCE ON PERFORMANCE EVALUATION METHODOLOGIES AND TOOLS (VALUETOOLS 2019), 2019, : 143 - 150
  • [3] Data-driven estimation of blade icing risk in wind turbines
    Murtas, Giulia
    Cabral, Henrique
    Tsiporkova, Elena
    2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 320 - 327
  • [4] Data-Driven Modelling of Wind Turbines
    van der Veen, Gijs
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 72 - 77
  • [5] Estimation of Damage Equivalent Loads of Drivetrain of Wind Turbines using Machine Learning
    Kamel, O.
    Hauptmann, S.
    Bottasso, C. L.
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2022, 2022, 2265
  • [6] A Data-Driven Approach for Components Useful Life Estimation in Wind Turbines
    Zornoza Martinez, Alejandro
    Martinez-Gomez, Jesus
    Gamez, Jose A.
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 37 - 47
  • [7] Optimisation of Data Acquisition in Wind Turbines with Data-Driven Conversion Functions for Sensor Measurements
    Colone, L.
    Reder, M.
    Tautz-Weinert, J.
    Melero, J. J.
    Natarajan, A.
    Watson, S. J.
    14TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, EERA DEEPWIND'2017, 2017, 137 : 571 - 578
  • [8] Data-driven Sensor Fault Estimation for the Wind Turbine Systems
    Rahimilarki, Reihane
    Gao, Zhiwei
    Jin, Nanlin
    Binns, Richard
    Zhang, Aihua
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 1211 - 1216
  • [9] A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines
    Remigius, W. Dheelibun
    Natarajan, Anand
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2022, 11 (01)
  • [10] Data-driven state estimation toward blade individual load-reduction of wind turbines
    Klein, A.
    Konrad, T.
    Abel, D.
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2022, 2022, 2265