In-situ microwave tomography for parts' cooldown monitoring in powder bed fusion of polymers

被引:0
|
作者
Sillani, Francesco [1 ,2 ]
Poretti, Samuel [3 ]
Pagani, Tommaso [3 ]
Hajdaj, Fatlind [3 ]
Schmid, Manfred [1 ]
Randazzo, Andrea [4 ]
Pastorino, Matteo [4 ]
Wegener, Konrad [2 ]
机构
[1] Inspire, Innovat Ctr Addit Mfg Switzerland Icams, Furstenlandstr 122, CH-9014 St Gallen, Switzerland
[2] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Inst Machine Tools & Mfg IWF, Leonhardstr 21, CH-8092 Zurich, Switzerland
[3] Isea, SUPSI, Dipartimento Tecnol Innovat, Via Balestra 16, CH-6900 Lugano, Switzerland
[4] Univ Genoa, Dept Elect Elect Telecommun Engn & Naval Architect, Via Opera Pia 11A, I-16145 Genoa, Italy
关键词
Selective laser sintering; Cooldown history; Temperature monitoring; Microwave tomography; Crystallization;
D O I
10.1016/j.addma.2023.103433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Temperature monitoring during the cooldown in powder bed fusion of polymers is essential to qualify parts, and is an absolute novelty in the field. This is because the direct reading of the parts' temperature is hindered by the powder. In this work, an innovative temperature monitoring technology based on microwave tomography is used to assess the part cooldown history in an industry-grade EOS P110 machine. So, relative and absolute readings of the temperature field can be carried out even for parts surrounded by powder. For the first time, several cooldown rates could be experimentally measured depending on the different polymer state: 0.56 degrees C min-1 in the liquid phase, 1.2 degrees C min-1 during supercooling, 0.83 degrees C min-1 in the solid phase. This technology will allow the development of a new generation of smart PBF machines that can better sense and hence control the entire PBF process, including the cooldown phase, which is often neglected but has the highest impact on the final mechanical performances of parts.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] In-situ monitoring of powder bed fusion of polymers using laser profilometry
    Sillani, Francesco
    MacDonald, Eric
    Villela, Janely
    Schmid, Manfred
    Wegener, Konrad
    ADDITIVE MANUFACTURING, 2022, 59
  • [2] Imbalanced data generation and fusion for in-situ monitoring of laser powder bed fusion
    Li, Jingchang
    Cao, Longchao
    Liu, Huaping
    Zhou, Qi
    Zhang, Xiangdong
    Li, Menglei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 199
  • [3] In-Situ Monitoring and Modeling of Metal Additive Manufacturing Powder Bed Fusion
    Alldredge, Jocob
    Slotwinski, John
    Storck, Steven
    Kim, Sam
    Goldberg, Arnold
    Montalbano, Timothy
    44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOL 37, 2018, 1949
  • [4] On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion
    Repossini, Giulia
    Laguzza, Vittorio
    Grasso, Marco
    Colosimo, Bianca Maria
    ADDITIVE MANUFACTURING, 2017, 16 : 35 - 48
  • [5] In-situ monitoring of powder bed fusion of metals using eddy current testing
    Spurek, Marvin A.
    Spierings, Adriaan B.
    Lany, Marc
    Revaz, Bernard
    Santi, Gilles
    Wicht, Jonatan
    Wegener, Konrad
    ADDITIVE MANUFACTURING, 2022, 60
  • [6] In-situ measurement and monitoring methods for metal powder bed fusion: an updated review
    Grasso, M.
    Remani, A.
    Dickins, A.
    Colosimo, B. M.
    Leach, R. K.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [7] META-DATA FOR IN-SITU MONITORING OF LASER POWDER BED FUSION PROCESSES
    Feng, Shaw C.
    Lu, Yan
    Jones, Albert T.
    PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 1A, 2020,
  • [8] In-situ monitoring techniques for laser powder bed fusion additive manufacturing:a review
    Li Z.
    Zhang Y.
    Zhong K.
    Shi Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (12): : 1 - 9and27
  • [9] In-situ alloying in powder bed fusion: The role of powder morphology
    Knieps, Marius S.
    Reynolds, William J.
    Dejaune, Juliette
    Clare, Adam T.
    Evirgen, Alper
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 807
  • [10] In-situ monitoring of laser-based powder bed fusion using fringe projection
    Remani, Afaf
    Rossi, Arianna
    Pena, Fernando
    Thompson, Adam
    Dardis, John
    Jones, Nick
    Senin, Nicola
    Leach, Richard
    ADDITIVE MANUFACTURING, 2024, 90