Generalized Covariance Estimator

被引:5
|
作者
Gourieroux, Christian [1 ,2 ,3 ]
Jasiak, Joann [4 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Toulouse Sch Econ, Toulouse, France
[3] CREST, Paris, France
[4] York Univ, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Commodities; Continuously updating GMM; Canonical correlation; Generalized covariance estimator; Mixed causal-noncausal process; Portmanteau Statistic; Semiparametric estimator; INDEPENDENT COMPONENT ANALYSIS; GOODNESS-OF-FIT; TIME-SERIES; RESIDUAL AUTOCORRELATIONS; PORTMANTEAU TEST; MODELS; IDENTIFICATION; REGRESSION; INFERENCE;
D O I
10.1080/07350015.2022.2120486
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a class of semi-parametric dynamic models with iid errors, including the nonlinear mixed causal-noncausal Vector Autoregressive (VAR), Double-Autoregressive (DAR) and stochastic volatility models. To estimate the parameters characterizing the (nonlinear) serial dependence, we introduce a generic Generalized Covariance (GCov) estimator, which minimizes a residual-based multivariate portmanteau statistic. In comparison to the standard methods of moments, the GCov estimator has an interpretable objective function, circumvents the inversion of high-dimensional matrices, and achieves semi-parametric efficiency in one step. We derive the asymptotic properties of the GCov estimator and show its semi-parametric efficiency. We also prove that the associated residual-based portmanteau statistic is asymptotically chi-square distributed. The finite sample performance of the GCov estimator is illustrated in a simulation study. The estimator is then applied to a dynamic model of commodity futures.
引用
收藏
页码:1315 / 1327
页数:13
相关论文
共 50 条