Multi-modal transformer for fake news detection

被引:2
|
作者
Yang, Pingping [1 ]
Ma, Jiachen [1 ]
Liu, Yong [1 ]
Liu, Meng [2 ]
机构
[1] Heilongjiang Univ, Harbin 150000, Peoples R China
[2] Natl Univ Def Technol, Changsha 410073, Peoples R China
关键词
fake news detection; multimodal fusion; attention mechanism; semantic matching; SOCIAL MEDIA;
D O I
10.3934/mbe.2023657
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fake news has already become a severe problem on social media, with substantially more detrimental impacts on society than previously thought. Research on multi-modal fake news detection has substantial practical significance since online fake news that includes multimedia elements are more likely to mislead users and propagate widely than text-only fake news. However, the existing multi-modal fake news detection methods have the following problems: 1) Existing methods usually use traditional CNN models and their variants to extract image features, which cannot fully extract high-quality visual features. 2) Existing approaches usually adopt a simple concatenate approach to fuse inter-modal features, leading to unsatisfactory detection results. 3) Most fake news has large disparity in feature similarity between images and texts, yet existing models do not fully utilize this aspect. Thus, we propose a novel model (TGA) based on transformers and multi-modal fusion to address the above problems. Specifically, we extract text and image features by different transformers and fuse features by attention mechanisms. In addition, we utilize the degree of feature similarity between texts and images in the classifier to improve the performance of TGA. Experimental results on the public datasets show the effectiveness of TGA*.
引用
收藏
页码:14699 / 14717
页数:19
相关论文
共 50 条
  • [1] Multi-modal Chinese Fake News Detection
    Huang, Wenxi
    Zhao, Zhangyi
    Chen, Xiaojun
    Li, Mark Junjie
    Zhang, Qin
    Fournier-Viger, Philippe
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 109 - 117
  • [2] Positive Unlabeled Fake News Detection via Multi-Modal Masked Transformer Network
    Wang, Jinguang
    Qian, Shengsheng
    Hu, Jun
    Hong, Richang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 234 - 244
  • [3] ConvNet frameworks for multi-modal fake news detection
    Chahat Raj
    Priyanka Meel
    Applied Intelligence, 2021, 51 : 8132 - 8148
  • [4] An effective strategy for multi-modal fake news detection
    Xu Peng
    Bao Xintong
    Multimedia Tools and Applications, 2022, 81 : 13799 - 13822
  • [5] Multi-Modal Component Embedding for Fake News Detection
    Kang, SeongKu
    Hwang, Junyoung
    Yu, Hwanjo
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [6] An effective strategy for multi-modal fake news detection
    Xu Peng
    Bao Xintong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13799 - 13822
  • [7] ConvNet frameworks for multi-modal fake news detection
    Raj, Chahat
    Meel, Priyanka
    APPLIED INTELLIGENCE, 2021, 51 (11) : 8132 - 8148
  • [8] SpotFake: A Multi-modal Framework for Fake News Detection
    Singhal, Shivangi
    Shah, Rajiv Ratn
    Chakraborty, Tanmoy
    Kumaraguru, Ponnurangam
    Satoh, Shin'ichi
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 39 - 47
  • [9] Is Multi-Modal Necessarily Better? Robustness Evaluation of Multi-Modal Fake News Detection
    Chen, Jinyin
    Jia, Chengyu
    Zheng, Haibin
    Chen, Ruoxi
    Fu, Chenbo
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (06): : 3144 - 3158
  • [10] Multi-modal transformer using two-level visual features for fake news detection
    Wang, Bin
    Feng, Yong
    Xiong, Xian-cai
    Wang, Yong-heng
    Qiang, Bao-hua
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10429 - 10443