A data-driven multi-objective optimization framework for determining the suitability of hydrogen fuel cell vehicles in freight transport

被引:5
|
作者
Wang, Shiqi [1 ]
Peng, Zhenhan [1 ]
Wang, Pinxi [2 ,3 ,4 ]
Chen, Anthony [5 ,7 ]
Zhuge, Chengxiang [1 ,6 ,7 ,8 ]
机构
[1] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Beijing Transport Inst, 9 Liuliqiao South Lane, Beijing 100073, Peoples R China
[4] Beijing Key Lab Transport Energy Conservat & Emiss, 9 Liuliqiao South Lane, Beijing 100073, Peoples R China
[5] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[6] Hong Kong Polytech Univ, Res Inst Sustainable Urban Dev, Kowloon, Hong Kong, Peoples R China
[7] Hong Kong Polytech Univ, Smart Cities Res Inst, Hong Kong, Peoples R China
[8] Hong Kong Polytech Univ Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery electric vehicle; Hydrogen fuel cell vehicle; Freight transport system; Life cycle analysis; Data-driven simulation; LIFE-CYCLE ASSESSMENT; CHARGING STATIONS; ELECTRIC VEHICLES; MODEL; LOCATION;
D O I
10.1016/j.apenergy.2023.121452
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to evaluate suitability of battery electric vehicles (BEVs) and hydrogen fuel cell vehicles (HFCVs) in freight transport systems, this paper proposes a data-driven and simulation-based multi-objective optimization method to deploy charging/refueling facilities for BEVs/HFCVs. The model considers three objectives, namely minimizing total system cost, maximizing service reliability, and minimizing greenhouse gas (GHG) emissions. In particular, a data-driven micro-simulation approach is developed to simulate the operation of freight transport systems with different vehicle and facility types based on the analysis of a one-week Global Positioning System (GPS) trajectory dataset containing 63,000 freight vehicles in Beijing. With the model, we compare the suitability of BEVs and HFCVs within three typical scenarios, i.e., BEVs coupled with Charging Stations (BEV-CS), BEVs coupled with Battery Swap Stations (BEV-BSS), and HFCVs coupled with Hydrogen Refueling Stations (HFCVHRS). The results suggest that BEV-CS has the lowest total system cost: its system cost is 62.5% and 90.3% of the costs in BEV-BSS and HFCV-HRS, respectively. BEV-BSS has the lowest delay time: its delay time is 62.1% and 86.0% of the delay times in BEV-CS and HFCV-HRS, respectively. HFCV-HRS has the lowest GHG emissions: its emissions are 37.3% and 46.9% of the emissions in BEV-CS and BEV-BSS, respectively. The results are expected to be helpful for policy making and infrastructure planning in promoting the development of alternative fuel vehicles.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Performances investigation and multi-objective optimization of gas foil bearings in hydrogen fuel cell vehicles
    Shi, Ting
    Chen, Zhikai
    Zhang, Jiatong
    Peng, Xueyuan
    Feng, Jianmei
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (13) : 18849 - 18865
  • [2] Multi-objective optimization of hydrocyclone by combining mechanistic and data-driven models
    Ye, Qing
    Duan, Peibo
    Kuang, Shibo
    Ji, Li
    Zou, Ruiping
    Yu, Aibing
    POWDER TECHNOLOGY, 2022, 407
  • [3] A Secure Federated Data-Driven Evolutionary Multi-Objective Optimization Algorithm
    Liu, Qiqi
    Yan, Yuping
    Ligeti, Peter
    Jin, Yaochu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 191 - 205
  • [4] Data-driven multi-objective optimization for electric vehicle charging infrastructure
    Farhadi, Farzaneh
    Wang, Shixiao
    Palacin, Roberto
    Blythe, Phil
    ISCIENCE, 2023, 26 (10)
  • [5] Multi-objective combustion optimization based on data-driven hybrid strategy
    Zheng, Wei
    Wang, Chao
    Yang, Yajun
    Zhang, Yongfei
    ENERGY, 2020, 191 (191)
  • [6] Application of data-driven design optimization methodology to a multi-objective design optimization problem
    Zhao, H.
    Icoz, T.
    Jaluria, Y.
    Knight, D.
    JOURNAL OF ENGINEERING DESIGN, 2007, 18 (04) : 343 - 359
  • [7] Multi-objective optimization for energy management of fuel cell hybrid electric vehicles
    Liu, Hao
    Chen, Jian
    Wu, Chengshuai
    Chen, Hao
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 6303 - 6308
  • [8] Data-driven modeling and multi-objective optimization of a continuous kraft pulping digester
    Correa, Isabela B.
    de Souza Jr, Mauricio B.
    Secchi, Argimiro R.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 207 : 505 - 517
  • [9] Data-driven based multi-objective combustion optimization covering static and states
    Zheng, Wei
    Wang, Chao
    Liu, Da
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [10] Multi-objective optimization of microfluidic fuel cell
    Feali, Mohammad Saeed
    Fathipour, Morteza
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2014, 50 (06) : 561 - 568