TRACE: Transformer-based continuous tracking framework using IoT and MCS

被引:3
|
作者
Mohammed, Shahmir Khan [1 ]
Singh, Shakti [1 ]
Mizouni, Rabeb [1 ]
Otrok, Hadi [1 ]
机构
[1] Khalifa Univ, Dept Comp Sci, Abu Dhabi 127788, U Arab Emirates
关键词
IoT; Continuous tracking; Machine learning; Deep learning; Transformers; Trajectory prediction; TRAJECTORY PREDICTION; TARGET-TRACKING; NEURAL-NETWORK; KALMAN FILTER; INTERNET; THINGS; LOCALIZATION;
D O I
10.1016/j.jnca.2023.103793
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Target tracking, a critical application in the Internet of Things (IoT) and Mobile Crowd Sensing (MCS) domains, is a complex task that involves the continuous estimation of the positions of an object by using efficient and accurate algorithms. Some potential applications of target tracking include surveillance systems, asset tracking, wildlife monitoring, and cross-border security. The existing target tracking solutions are either energy-inefficient or are only effective for fixed-length trajectories, making them impractical for real-world applications. For robust predictive tracking, with irregular trajectory lengths, energy efficiency and accuracy are vital to ensure system's longevity and reliability. In this work, using a combination of trajectory prediction and path correction techniques, a novel approach, TRACE , is proposed for continuously tracking a target in an environment. TRACE uses locations offered by IoT/MCS localization systems to make predictions about the target's future movement. A transformer neural network is implemented to learn mobility patterns to predict the target's future trajectory. To ensure accurate predictions, a path correction mechanism is devised, by updating the predicted trajectory using polynomial regression. Experiments are conducted using a real-world GeoLife dataset to evaluate the performance of the proposed approach. The results demonstrate that TRACE performs better than existing tracking techniques with an improvement in accuracy of about 50% while using 85% less energy, supporting the potential of the proposed approach for enhancing target tracking in IoT/MCS applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Tiny Transformer-Based Anomaly Detection Framework for IoT Solutions
    Barbieri, Luca
    Brambilla, Mattia
    Stefanutti, Mario
    Romano, Ciro
    De Carlo, Niccolo
    Roveri, Manuel
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 : 462 - 478
  • [2] TFTN: A Transformer-Based Fusion Tracking Framework of Hyperspectral and RGB
    Zhao, Chunhui
    Liu, Hongjiao
    Su, Nan
    Yan, Yiming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Transformer-Based Maneuvering Target Tracking
    Zhao, Guanghui
    Wang, Zelin
    Huang, Yixiong
    Zhang, Huirong
    Ma, Xiaojing
    SENSORS, 2022, 22 (21)
  • [4] Transformer-Based Intrusion Detection for IoT Networks
    Akuthota, Uday Chandra
    Bhargava, Lava
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 6062 - 6067
  • [5] Operational prediction of solar flares using a transformer-based framework
    Yasser Abduallah
    Jason T. L. Wang
    Haimin Wang
    Yan Xu
    Scientific Reports, 13
  • [6] Development of a Text Classification Framework using Transformer-based Embeddings
    Yeasmin, Sumona
    Afrin, Nazia
    Saif, Kashfia
    Huq, Mohammad Rezwanul
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), 2022, : 74 - 82
  • [7] Operational prediction of solar flares using a transformer-based framework
    Abduallah, Yasser
    Wang, Jason T. L.
    Wang, Haimin
    Xu, Yan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] TFMFT: Transformer-based multiple fish tracking
    Li, Weiran
    Liu, Yeqiang
    Wang, Wenxu
    Li, Zhenbo
    Yue, Jun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 217
  • [9] Transformer-based convolutional forgetting knowledge tracking
    Tieyuan Liu
    Meng Zhang
    Chuangying Zhu
    Liang Chang
    Scientific Reports, 13
  • [10] Transformer-based convolutional forgetting knowledge tracking
    Liu, Tieyuan
    Zhang, Meng
    Zhu, Chuangying
    Chang, Liang
    SCIENTIFIC REPORTS, 2023, 13 (01)