Anisotropic global microlocal analysis for tempered distributions

被引:7
|
作者
Rodino, Luigi [1 ]
Wahlberg, Patrik [2 ]
机构
[1] Univ Torino, Dept Math, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 02期
关键词
Tempered distributions; Global wave front sets; Pseudodifferential operators; Shubin calculus; Microlocality; Microellipticity; Phase space; Anisotropy; WAVE-FRONT SET; SCHRODINGER-EQUATIONS; SINGULARITIES; PROPAGATION; OPERATORS;
D O I
10.1007/s00605-022-01812-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an anisotropic version of the Shubin calculus of pseudodifferential operators on R-d Anisotropic symbols and Gabor wave front sets are defined in terms of decay or growth along curves in phase space of power type parametrized by one positive parameter that distinguishes space and frequency variables. We show that this gives subcalculi of Shubin's isotropic calculus, and we show a microlocal as well as a microelliptic inclusion in the framework. Finally we prove an inclusion for the anisotropic Gabor wave front set of chirp type oscillatory functions with a real polynomial phase function.
引用
收藏
页码:397 / 434
页数:38
相关论文
共 50 条