K-stability and birational models of moduli of quartic K3 surfaces

被引:5
|
作者
Ascher, Kenneth [1 ]
DeVleming, Kristin [2 ]
Liu, Yuchen [3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
KAHLER-EINSTEIN METRICS; FANO VARIETIES; RATIONAL CONNECTEDNESS; STABLE CURVES; SPACE; COMPACTIFICATIONS; ARRANGEMENTS; BOUNDEDNESS; EXISTENCE; FAMILIES;
D O I
10.1007/s00222-022-01170-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the K-moduli spaces of log Fano pairs (P-3, cS) where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily-Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza-O' Grady's prediction on the Hassett-Keel-Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of P-3.
引用
收藏
页码:471 / 552
页数:82
相关论文
共 50 条