On chromatic number and clique number in k-step Hamiltonian graphs

被引:0
|
作者
Aziz, Noor A'lawiah Abd [1 ]
Rad, Nader Jafari [2 ]
Kamarulhaili, Hailiza [1 ]
Hasni, Roslan [3 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Shahed Univ, Dept Math, Tehran, Iran
[3] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Nerus 21030, Terengganu, Malaysia
关键词
Hamiltonian graph; k-step Hamiltonian graph; chromatic number; clique number; UPPER-BOUNDS;
D O I
10.22049/CCO.2022.27970.1407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G of order n is called k-step Hamiltonian for k > 1 if we can label the vertices of G as v1, v2, . . . , vn such that d(vn, v1) = d(vi, vi+1) = k for i = 1, 2, . . . , n-1. The (vertex) chromatic number of a graph G is the minimum number of colors needed to color the vertices of G so that no pair of adjacent vertices receive the same color. The clique number of G is the maximum cardinality of a set of pairwise adjacent vertices in G. In this paper, we study the chromatic number and the clique number in k-step Hamiltonian graphs for k > 2. We present upper bounds for the chromatic number in k-step Hamiltonian graphs and give characterizations of graphs achieving the equality of the bounds. We also present an upper bound for the clique number in k-step Hamiltonian graphs and characterize graphs achieving equality of the bound.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [1] Bounds for the Independence Number in k-Step Hamiltonian Graphs
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2018, 26 (01) : 15 - 28
  • [2] On k-step Hamiltonian graphs
    Lau, G.-C. (geeclau@yahoo.com), 1600, Charles Babbage Research Centre (90):
  • [3] The list chromatic number of graphs with small clique number
    Molloy, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 264 - 284
  • [4] CHROMATIC NUMBER VERSUS COCHROMATIC NUMBER IN GRAPHS WITH BOUNDED CLIQUE NUMBER
    ERDOS, P
    GIMBEL, J
    STRAIGHT, HJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 235 - 240
  • [5] A Note on k-Step Hamiltonian Graphs
    Abd Aziz, N. A.
    Rad, N. J.
    Kamarulhaili, H.
    Hasni, R.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 87 - 93
  • [6] Hardness of computing clique number and chromatic number for Cayley graphs
    Godsil, Chris
    Rooney, Brendan
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 62 : 147 - 166
  • [7] The jump of the clique chromatic number of random graphs
    Lichev, Lyuben
    Mitsche, Dieter
    Warnke, Lutz
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 1016 - 1034
  • [8] Hamiltonian chromatic number of block graphs
    Bantva D.
    Journal of Graph Algorithms and Applications, 2017, 21 (03) : 353 - 369
  • [9] Some Properties of k-step Hamiltonian Graphs
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [10] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146