Investigating the dynamics of a novel fractional- order monkeypox epidemic model with optimal control

被引:25
|
作者
Adel, Waleed [1 ,3 ,5 ]
Elsonbaty, Amr [2 ,3 ]
Aldurayhim, A. [2 ]
El-Mesady, A. [4 ]
机构
[1] Univ Francaise Egypte, Lab Interdisciplinaire Univ Francaise Egypte UFEID, Cairo 11837, Egypt
[2] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[3] Mansoura Univ, Fac Engn, Dept Math & Engn Phys, Mansoura, Egypt
[4] Menoufia Univ, Fac Elect Engn, Dept Phys & Engn Math, Menoufia 32952, Egypt
[5] Horus Univ Egypt, Fac Engn, Dept Basic Sci, New Damietta 34518, Egypt
关键词
Epidemics; Fractional calculus; Monkeypox virus; Stability analysis; Reproductive number; Equilibrium points; MATHEMATICAL-MODEL; VACCINATION; STRATEGIES;
D O I
10.1016/j.aej.2023.04.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a novel fractional-order monkeypox epidemic model is introduced, where -fractional-order derivatives in the sense of Caputo are applied to achieve more realistic results for the proposed nonlinear model. The newly developed model, which models the transmission and spread of monkeypox across the interacting populations of humans and rodents, is controlled by a 14-dimensional system of fractional-order differential equations. To comply with empirical and reported observations, the state variables of the proposed model are categorized into three main groups of state variables: the population who are at high risk of being infected, people with low infection probability, and finally, rodents who can carry and transmit the virus. The high-risk group represents individuals who might be more vulnerable to the virus due to their habits, workplace, or hygienic behaviors. The existence, uniqueness, non-negativity, and boundedness of the solution to the proposed model are proved. The next-generation matrix approach is used to determine the con-trol monkeypox reproduction number, R0, and the equilibrium points for the proposed model are obtained. The effect of the main parameters in the model is thoroughly investigated to provide new insight into the new dynamics of the model. The region of stability of the disease-free points (DFE) is obtained in the space of parameters, and the effect of the parameters is examined. In addition, the optimal control strategy is applied to the model to provide insight into some prevention control to stop the disease from spreading and to provide new control strategies during the monkeypox outbreak. Numerical simulations are performed to validate the theoretical results of the different optimal control strategies.(c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:519 / 542
页数:24
相关论文
共 50 条
  • [1] Optimal control of a fractional-order monkeypox epidemic model with vaccination and rodents culling
    Musafir, Raqqasyi R.
    Suryanto, Agus
    Darti, Isnani
    Trisilowati
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14
  • [2] EXPLORING THE DYNAMICS OF MONKEYPOX: A FRACTIONAL ORDER EPIDEMIC MODEL APPROACH
    Baba, Isa Abdullahi
    Hincal, Evren
    Rihan, Fathalla A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2024, 23 (01) : 32 - 44
  • [3] Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control
    Naik, Parvaiz Ahmad
    Zu, Jian
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [4] Optimal control of a fractional order epidemic model with carriers
    Das, Meghadri
    Samanta, G. P.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2022, 10 (02) : 598 - 619
  • [5] Optimal control of a fractional order epidemic model with carriers
    Meghadri Das
    G. P. Samanta
    International Journal of Dynamics and Control, 2022, 10 : 598 - 619
  • [6] Dynamics of Caputo Fractional Order SEIRV Epidemic Model with Optimal Control and Stability Analysis
    Mahata A.
    Paul S.
    Mukherjee S.
    Das M.
    Roy B.
    International Journal of Applied and Computational Mathematics, 2022, 8 (1)
  • [7] Complex Dynamics and Fractional-Order Optimal Control of an Epidemic Model with Saturated Treatment and Incidence
    Majee, Suvankar
    Kar, T. K.
    Jana, Soovoojeet
    Das, Dhiraj Kumar
    Nieto, J. J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [8] On nonlinear dynamics of a fractional order monkeypox virus model
    El-Mesady, A.
    Elsonbaty, Amr
    Adel, Waleed
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [9] Fractional order mathematical model of monkeypox transmission dynamics
    Peter, Olumuyiwa James
    Oguntolu, Festus Abiodun
    Ojo, Mayowa M.
    Oyeniyi, Abdulmumin Olayinka
    Jan, Rashid
    Khan, Ilyas
    PHYSICA SCRIPTA, 2022, 97 (08)
  • [10] Optimal control of a fractional-order model for the HIV/AIDS epidemic
    Kheiri, Hossein
    Jafari, Mohsen
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (07)