Substorm Onset Prediction Using Machine Learning Classified Auroral Images

被引:2
|
作者
Sado, P. [1 ]
Clausen, L. B. N. [1 ]
Miloch, W. J. [1 ]
Nickisch, H. [2 ]
机构
[1] Univ Oslo, Dept Phys, Oslo, Norway
[2] Philips Res, Hamburg, Germany
基金
欧洲研究理事会;
关键词
aurora; all sky imager; machine learning; space weather; substorms; space weather prediction;
D O I
10.1029/2022SW003300
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We classify all sky images from four seasons, transform the classification results into time-series data to include information about the evolution of images and combine these with information on the onset of geomagnetic substorms. We train a lightweight classifier on this data set to predict the onset of substorms within a 15 min interval after being shown information of 30 min of aurora. The best classifier achieves a balanced accuracy of 59% with a recall rate of 39% and false positive rate of 20%. We show that the classifier is limited by the strong imbalance in the data set of approximately 50:1 between negative and positive events. All software and results are open source and freely available.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ONSET OF AN AURORAL ABSORPTION SUBSTORM
    RANTA, H
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1978, 83 (NA8): : 3893 - 3899
  • [2] Auroral kilometric radiation at substorm onset
    Liou, K
    Meng, CI
    Lui, ATY
    Newell, PT
    Anderson, RR
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A11) : 25325 - 25331
  • [3] Automatic segmentation of auroral images using machine learning techniques
    Yang QiuJu
    Zhou PengHui
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (01): : 63 - 72
  • [4] Vertical evolution of auroral acceleration at substorm onset
    Morioka, A.
    Miyoshi, Y.
    Tsuchiya, F.
    Misawa, H.
    Yumoto, K.
    Parks, G. K.
    Anderson, R. R.
    Menietti, J. D.
    Honary, F.
    ANNALES GEOPHYSICAE, 2009, 27 (02) : 525 - 535
  • [5] Substorm onset process: Ignition of auroral acceleration and related substorm phases
    Morioka, Akira
    Miyoshi, Yoshizumi
    Kasaba, Yasumasa
    Sato, N.
    Kadokura, Akira
    Misawa, Hiroaki
    Miyashita, Yukinaga
    Mann, Ian
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (02) : 1044 - 1059
  • [6] Ionospheric flow structures associated with auroral beading at substorm auroral onset
    Gallardo-Lacourt, Bea
    Nishimura, Y.
    Lyons, L. R.
    Ruohoniemi, J. M.
    Donovan, E.
    Angelopoulos, V.
    McWilliams, K. A.
    Nishitani, N.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (11) : 9150 - 9159
  • [7] Prediction Demand for Classified Ads Using Machine Learning: an Experiment Study
    Adnane, Marouane
    El Haj Tirari, Mohammed
    El Fkihi, Sanaa
    Oulad Haj Thami, Rachid
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), 2019,
  • [8] A COMPARISON OF MAGNETIC SIGNATURES AND DMSP AURORAL IMAGES AT SUBSTORM ONSET - 3 CASE-STUDIES
    GELPI, C
    SINGER, HJ
    HUGHES, WJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1987, 92 (A3): : 2447 - 2460
  • [9] FORMATION OF THE STABLE AURORAL ARC THAT INTENSIFIES AT SUBSTORM ONSET
    LYONS, LR
    SAMSON, JC
    GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (21) : 2171 - 2174
  • [10] Importance of auroral features in the search for substorm onset processes
    Akasofu, Syun-Ichi
    Lui, A. T. Y.
    Meng, C. -I.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115