Polynomial estimates for the method of cyclic projections in Hilbert spaces

被引:1
|
作者
Reich, Simeon [1 ]
Zalas, Rafal [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
Product space; Rates of asymptotic regularity; Rates of convergence; ARBITRARILY SLOW CONVERGENCE; ALTERNATING PROJECTIONS; LINEAR CONVERGENCE; ALGORITHM; SEQUENCES; OPERATORS; PRODUCT;
D O I
10.1007/s11075-023-01533-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the method of cyclic projections when applied to closed and linear subspaces M-i, i = 1, . . ., m, of a real Hilbert space H. We show that the average distance to individual sets enjoys a polynomial behavior o(k(-1/2)) along the trajectory of the generated iterates. Surprisingly, when the starting points are chosen from the subspace S-i=1(m) M-i(?), our result yields a polynomial rate of convergence O(k(-1/2)) for the method of cyclic projections itself. Moreover, if E(i=1)(m)M(i)(?)is not closed, then both of the aforementioned rates are best possible in the sense that the corresponding polynomial k(1/2) cannot be replaced by k(1/2+e) for any e > 0.
引用
收藏
页码:1217 / 1242
页数:26
相关论文
共 50 条
  • [1] Polynomial estimates for the method of cyclic projections in Hilbert spaces
    Simeon Reich
    Rafał Zalas
    Numerical Algorithms, 2023, 94 : 1217 - 1242
  • [2] Oblique projections in Hilbert spaces
    Jacob Steinberg
    Integral Equations and Operator Theory, 2000, 38 : 81 - 119
  • [3] Oblique projections in Hilbert spaces
    Steinberg, J
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (01) : 81 - 119
  • [4] A polynomial characterization of Hilbert spaces
    Dahmane Achour
    Khalil Saadi
    Collectanea mathematica, 2010, 61 : 291 - 301
  • [5] A polynomial characterization of Hilbert spaces
    Achour, Dahmane
    Saadi, Khalil
    COLLECTANEA MATHEMATICA, 2010, 61 (03) : 291 - 301
  • [6] Cyclic Hilbert Spaces
    Radulescu, Florin
    STUDIES IN INFORMATICS AND CONTROL, 2009, 18 (01): : 83 - 86
  • [7] Some error estimates for the reproducing kernel Hilbert spaces method
    Abbasbandy, Saeid
    Azarnavid, Babak
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 789 - 797
  • [8] Bicircular projections and characterization of Hilbert spaces
    Stachó, LL
    Zalar, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (10) : 3019 - 3025
  • [9] Cyclic Projections in Hadamard Spaces
    Lytchak, Alexander
    Petrunin, Anton
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (02) : 636 - 642
  • [10] Cyclic Projections in Hadamard Spaces
    Alexander Lytchak
    Anton Petrunin
    Journal of Optimization Theory and Applications, 2022, 194 : 636 - 642