Mechanical properties prediction of ductile iron with spherical graphite using multi-scale finite element model

被引:7
|
作者
Alizadeh, Mohammad Hosein [1 ]
Ajri, Masoud [1 ]
Maleki, Vahid Arab [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Mech Engn, Ardebil 5619913131, Iran
关键词
ductile iron; spherical graphite; yield stress; multi-scale finite element model;
D O I
10.1088/1402-4896/ad0d97
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, using the multi-scale finite element method, the effect of graphite particles on the mechanical behavior of ductile iron has been investigated under tensile loading. For this purpose, taking into account the spherical geometric shape of the graphite phase and considering a specific volume fraction, these spheres are randomly placed in the whole body and a two-component composite material is created. As a next step, a micromechanical model of these materials is developed by defining the mechanical properties of the matrix and graphites as well as their interfaces. The mechanical properties of the matrix are simulated using the Ramberg-Osgood elastic-plastic model. By simulation in ABAQUS software and using nonlinear dynamic analysis, the effects of volume percentages and adhesion of graphite particles with matrix on the direct tensile load-displacement behavior of ductile iron were investigated. The results of experimental tests were used to verify the results of the numerical model. The weight percentage of graphite particles has a significant effect on the tensile strength and elastic modulus of these cast irons. The results show that with the increase in the amount of graphite particles, the tensile strength of cast iron increases up to a certain value and then reverses. With 21% graphite particles, the maximum tensile strength of ductile iron is 601 MPa. Compared with a pure sample of cast iron, the tensile strength increases by approximately 13.4% for this weight percentage of graphite particles.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Prediction of the failure behavior of pseudo-ductile composites using a multi-scale finite element model
    Abdellahi, Behzad
    Azhari, Fatemeh
    Nguyen, Phu
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2024, 26 (07) : 1209 - 1242
  • [2] Finite element prediction of the impact compressive properties of three-dimensional braided composites using multi-scale model
    Wan, Yumin
    Wang, Youjiang
    Gu, Bohong
    COMPOSITE STRUCTURES, 2015, 128 : 381 - 394
  • [3] Prediction of mechanical properties of carbon nanotube-carbon fiber reinforced hybrid composites using multi-scale finite element modelling
    Malekimoghadam, Reza
    Icardi, Ugo
    COMPOSITES PART B-ENGINEERING, 2019, 177
  • [4] Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis
    Zhong, Yucheng
    Le Quan Ngoc Tran
    Kureemun, Umeyr
    Lee, Heow Pueh
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (09) : 4957 - 4967
  • [5] Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis
    Yucheng Zhong
    Le Quan Ngoc Tran
    Umeyr Kureemun
    Heow Pueh Lee
    Journal of Materials Science, 2017, 52 : 4957 - 4967
  • [6] Multi-scale simulation of ductile iron casting
    Kubo, J.
    MCWASP XIV: INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2015, 84
  • [7] Sutured tendon repair; a multi-scale finite element model
    Shelley D. Rawson
    Lee Margetts
    Jason K. F. Wong
    Sarah H. Cartmell
    Biomechanics and Modeling in Mechanobiology, 2015, 14 : 123 - 133
  • [8] Sutured tendon repair; a multi-scale finite element model
    Rawson, Shelley D.
    Margetts, Lee
    Wong, Jason K. F.
    Cartmell, Sarah H.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2015, 14 (01) : 123 - 133
  • [9] Erratum to: Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis
    Yucheng Zhong
    Le Quan Ngoc Tran
    Umeyr Kureemun
    Heow Pueh Lee
    Journal of Materials Science, 2017, 52 : 14011 - 14011
  • [10] Analysis of mechanical properties of carbon nanotube reinforced polymer composites using multi-scale finite element modeling approach
    Gupta, A. K.
    Harsha, S. P.
    COMPOSITES PART B-ENGINEERING, 2016, 95 : 172 - 178