Dynamic properties of random linear cocycles

被引:1
|
作者
Lee, Manseob [1 ]
Oh, Jumi [2 ]
机构
[1] Mokwon Univ, Dept Mkt Big Data & Math, Daejeon 35349, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Random linear cocycle; hyperbolic; pseudo trajectory tracing property; topologically stable; structurally stable; DIFFEOMORPHISMS;
D O I
10.1142/S179355712350208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the expansivity, pseudo trajectory tracing property and hyperbolicity of linear dynamical systems for the random view point. We show that to a random linear cocycle A, it is expansive if and only if it has the generalized pseudo trajectory tracing property. Moreover, we show that A is topologically stable if and only if it is structurally stable.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Dynamic properties of random linear cocycles
    Lee, Manseob
    Oh, Jumi
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (11)
  • [2] SHADOWING PROPERTY OF RANDOM LINEAR COCYCLES
    Fakhari, Abbas
    Golmakani, Ali
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 190 - 196
  • [3] PROPERTIES OF LINEAR DYNAMIC-SYSTEMS WITH RANDOM PARAMETERS
    KURILENKO, AM
    ENGINEERING CYBERNETICS, 1984, 22 (05): : 99 - 107
  • [4] On close to linear cocycles
    Keynes, HB
    Markley, NG
    Sears, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) : 1923 - 1931
  • [5] Invariant cocycles, random tilings and the super-K and strong Markov properties
    Schmidt, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (07) : 2813 - 2825
  • [6] Random ergodic theorems and real cocycles
    Lemanczyk, M
    Lesigne, E
    Parreau, F
    Volny, D
    Wierdl, M
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) : 285 - 321
  • [7] Mixed Random-Quasiperiodic Cocycles
    Cai, Ao
    Duarte, Pedro
    Klein, Silvius
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (04): : 1469 - 1497
  • [8] Random ergodic theorems and real cocycles
    Mariusz Lemańczyk
    Emmanuel Lesigne
    François Parreau
    Dalibor Volný
    Maté Wierdl
    Israel Journal of Mathematics, 2002, 130 : 285 - 321
  • [9] Mixed Random-Quasiperiodic Cocycles
    Ao Cai
    Pedro Duarte
    Silvius Klein
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 1469 - 1497
  • [10] On the exponential stability and hyperbolicity of linear cocycles
    Dragicevic, Davor
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02): : 259 - 277