Finitely Silting Comodules in Quasi-Finite Comodule Category

被引:0
|
作者
Yuan, Qianqian [1 ]
Yao, Hailou [1 ]
机构
[1] Beijing Univ Technol, Fac Sci, Dept Math, Beijing 100124, Peoples R China
基金
美国国家科学基金会;
关键词
quasi-finite silting comodule; finitely silting comodule; finitely tilting comodule; torsion pair; duality; COALGEBRAS;
D O I
10.21136/CMJ.2023.0173-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.
引用
收藏
页码:695 / 714
页数:20
相关论文
共 36 条
  • [1] Finitely silting comodules in quasi-finite comodule category
    Qianqian Yuan
    Hailou Yao
    Czechoslovak Mathematical Journal, 2023, 73 : 695 - 714
  • [2] Subshifts of quasi-finite type
    Buzzi, J
    INVENTIONES MATHEMATICAE, 2005, 159 (02) : 369 - 406
  • [3] QUASI-FINITE PROCESSION OF ISOLS
    MIKHEEV, VL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (09): : 85 - 87
  • [4] Subshifts of quasi-finite type
    Jérôme Buzzi
    Inventiones mathematicae, 2005, 159 : 369 - 406
  • [5] SUBGROUPS OF QUASI-FINITE GROUPS
    DERYABINA, GS
    OLSHANSKII, AY
    RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (06) : 203 - 204
  • [6] PROPERTIES OF QUASI-FINITE MODULES
    VIDAL, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (13): : 562 - &
  • [7] STRUCTURE OF QUASI-FINITE MODULES
    VIDAL, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 275 (05): : 323 - &
  • [8] Unitary quasi-finite representations of W∞
    Kac, VG
    Liberati, JI
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (01) : 11 - 27
  • [9] Compact maps and quasi-finite complexes
    Cencelj, M.
    Dydak, J.
    Smrekar, J.
    Vavpetic, A.
    Virk, Z.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (16) : 3005 - 3020
  • [10] Algebraic properties of quasi-finite complexes
    Cencelj, M.
    Dydak, J.
    Smrekar, J.
    Vavpetic, A.
    Virk, Z.
    FUNDAMENTA MATHEMATICAE, 2007, 197 : 67 - 80