Predicting severe maternal morbidity at admission for delivery using intelligible machine learning

被引:0
|
作者
Xu, Zifei [1 ]
Bosschieter, Tomas M. [1 ]
Lan, Hui [1 ]
Lengerich, Benjamin [2 ]
Nori, Harsha [3 ]
Sitcov, Kristin [4 ]
Painter, Ian [4 ]
Souter, Vivienne [5 ]
Caruana, Rich [3 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] MIT, Cambridge, MA USA
[3] Microsoft Res, Redmond, WA USA
[4] Fdn Hlth Care Qual, Seattle, WA USA
[5] Natera Inc, Austin, TN USA
关键词
D O I
暂无
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
624
引用
收藏
页码:S404 / S405
页数:2
相关论文
共 50 条
  • [1] Early Prediction of Severe Maternal Morbidity Using Machine Learning Techniques
    Arrieta Rodriguez, Eugenia
    Edna Estrada, Francisco
    Caicedo Torres, William
    Martinez Santos, Juan Carlos
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2016, 2016, 10022 : 259 - 270
  • [2] Severe maternal morbidity and the mode of delivery
    Pallasmaa, Nanneli
    Ekblad, Ulla
    Gissler, Mika
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2008, 87 (06) : 662 - 668
  • [3] Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter
    Clapp, Mark A.
    Kim, Ellen
    James, Kaitlyn E.
    Perlis, Roy H.
    Kaimal, Anjali J.
    McCoy, Thomas H., Jr.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 227 (03)
  • [4] Racial disparities in severe maternal morbidity during delivery admission for people with sickle cell anemia
    McCarther, Noria
    Daggett, Emily E.
    Putra, Manesha
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (01) : S673 - S673
  • [5] A Practical Approach to Identifying High Risk Delivery Admissions: Predicting Severe Maternal Morbidity
    Phillips, Jaclyn M.
    Hacker, Francis M.
    Lemon, Lara S.
    DeFilippo, Aislin
    Simhan, Hyagriv
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2022, 226 (01) : S614 - S615
  • [6] Predicting postpartum psychiatric admission using a machine learning approach
    Betts, Kim S.
    Kisely, Steve
    Alati, Rosa
    JOURNAL OF PSYCHIATRIC RESEARCH, 2020, 130 : 35 - 40
  • [7] Leveraging Machine Learning to Predict and Assess Disparities in Severe Maternal Morbidity in Maryland
    Li, Qingfeng
    Alfonso, Y. Natalia
    Wolfson, Carrie
    Aziz, Khyzer B.
    Creanga, Andreea A.
    HEALTHCARE, 2025, 13 (03)
  • [8] Directly Measured Costs of Severe Maternal Morbidity Events during Delivery Admission Compared with Uncomplicated Deliveries
    Debbink, Michelle P.
    Metz, Torri D.
    Nelson, Richard E.
    Janes, Sophie E.
    Kroes, Alexandra
    Begaye, Lori J.
    Heuser, Cara C.
    Smid, Marcela C.
    Silver, Robert M.
    Varner, Michael W.
    Einerson, Brett D.
    AMERICAN JOURNAL OF PERINATOLOGY, 2022, 39 (06) : 567 - 576
  • [9] Preterm preeclampsia prediction using intelligible machine learning
    Bosschieter, Tomas M.
    Xu, Zifei
    Lan, Hui
    Lengerich, Benjamin
    Nori, Harsha
    Sitcov, Kristin
    Painter, Ian
    Caruana, Rich
    Souter, Vivienne
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 228 (01) : S409 - S409
  • [10] Severe acute maternal morbidity and mode of delivery in the Netherlands
    van Dillen, Jeroen
    Zwart, Joost J.
    Schutte, Joke
    Bloemenkamp, Kitty W. M.
    van Roosmalen, Jos
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2010, 89 (11) : 1460 - 1465