On non-local elliptic equations with sublinear nonlinearities involving an eigenvalue problem

被引:0
|
作者
Chen, Ching-yu [1 ]
Kuo, Yueh-cheng [1 ]
Wang, Kuan-Hsiang [2 ]
Wu, Tsung-fang [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
[2] Natl Cheng Kung Univ, Dept Math, Tainan, Taiwan
关键词
eigenvalue problem; Kirchhoff-type equations; Mountain pass theorem; positive solutions; sublinear nonliearity; KIRCHHOFF TYPE EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1002/mma.8979
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-local elliptic equation of Kirchhoff-type -(a integral I-omega & nabla;uI(2)dx + 1) delta u= lambda f(x)u + g(x)IuI(gamma-2)u in omega for a, lambda > 0 with Dirichlet boundary conditions is investigated for the cases where 1 < (gamma) < 2. It is well known that with the non-local effect removed and f equivalent to 1, a branch of positive solutions bifurcates from infinity at lambda = lambda(1) and no positive solution exists whenever lambda > lambda for some lambda >= lambda(1) (see K. J. Brown, Calc. Var. 22, 483-494, 2005),where lambda(1) is the principal eigenvalue of the linear problem -delta u = lambda u. As a consequence of the non-local effect, our analysis has found no bifurcation from infinity, and at least one positive solution is always permitted for lambda > 0. Moreover, regions with three positive solutions are found for small value of a. Comparisons are also made of the results here with those of the elliptic problem in the absence of the non-local term under the same prescribed conditions using numerical simulations.
引用
收藏
页码:7454 / 7465
页数:12
相关论文
共 50 条
  • [1] On non-local nonlinear elliptic equations involving an eigenvalue problem
    Chen, Ching-yu
    Kuo, Yueh-cheng
    Wang, Kuan-Hsiang
    Wu, Tsung-fang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [2] On non-local nonlinear elliptic equations involving an eigenvalue problem
    Ching-yu Chen
    Yueh-cheng Kuo
    Kuan-Hsiang Wang
    Tsung-fang Wu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [3] A DOUBLE EIGENVALUE PROBLEM FOR SCHRODINGER EQUATIONS INVOLVING SUBLINEAR NONLINEARITIES AT
    Kristaly, Alexandru
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [4] Multiple Solutions for an Eigenvalue Problem Involving Non-local Elliptic p-Laplacian Operators
    Pucci, Patrizia
    Saldi, Sara
    GEOMETRIC METHODS IN PDE'S, 2015, 13 : 159 - 176
  • [5] Elliptic problem involving non-local boundary conditions
    Igbida, Noureddine
    Safimba, Soma
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 181 : 87 - 100
  • [6] A Multiplicity Result for a Non-Autonomous Sublinear Elliptic Problem Involving Nonlinearities Indefinite in Sign
    Anello, Giovanni
    Furnari, Luca
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01): : 21 - 32
  • [7] Nontrivial solutions to non-local problems with sublinear or superlinear nonlinearities
    Han, Zhiqing
    Xue, Ye
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):
  • [8] Elliptic systems involving sublinear and superlinear nonlinearities
    Cerda, Patricio
    Clemente, Rodrigo
    Ferraz, Diego
    Ubilla, Pedro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)
  • [9] A non-local semilinear eigenvalue problem
    Franzina, Giovanni
    Licheri, Danilo
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2193 - 2221
  • [10] A non-local semilinear eigenvalue problem
    Giovanni Franzina
    Danilo Licheri
    Fractional Calculus and Applied Analysis, 2022, 25 : 2193 - 2221