Microstructure and strain hardening behavior of the transformable 316L stainless steel processed by cryogenic pre-deformation

被引:9
|
作者
Wei, Yuntao [1 ]
Lu, Qi [2 ]
Kou, Zongde [1 ]
Feng, Tao [1 ]
Lai, Qingquan [3 ]
机构
[1] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Peoples R China
[2] Li Auto Inc, Shanghai 201800, Peoples R China
[3] Nanjing Tech Univ, Key Lab Light Weight Mat, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
316L stainless steel; Cryogenic pre -deformation; Deformation -induced martensitic  transformation; Strain hardening; INDUCED MARTENSITIC-TRANSFORMATION; PHASE-TRANSFORMATION; PLASTIC-DEFORMATION; TENSILE PROPERTIES; GENERAL MECHANISM; NUCLEATION; TEMPERATURE; EVOLUTION; KINETICS; SUBSTRUCTURE;
D O I
10.1016/j.msea.2022.144424
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The dynamic formation of alpha '-martensite during mechanical loading is essential in achieving the desired me-chanical properties of the metastable austenitic stainless steels (SS). However, the effect of alpha '-martensitic transformation on the mechanical behavior of 316L SS is less explored due to the over stability of austenite at room temperature (RT). Here, a thermomechanical processing method of cryogenic pre-deformation is applied to tailor the deformation-induced martensitic transformation in 316L SS and the subsequent deformation behavior during mechanical testing at RT. Detailed characterizations reveal that the alpha '-martensite nucleated at the intersection of shear bands by cryogenic pre-deformation can continue to grow along the shear bands at RT. The cryogenically-rolled (CryoRolled) 316L SS exhibits an excellent combination of strength and ductility in com-parison with the conventional cold-rolled counterparts, due to the proper activation of alpha '-martensitic trans-formation. The CryoRolled-12% sample presents a true tensile strength of 1143 MPa and a true uniform elongation of 0.17; while similar level of true tensile strength (1135 MPa) is obtained at the expense of low uniform elongation (0.024) for the RT-rolled-50% sample. A mean-field micromechanical model is applied to analyze the influence of the dynamic formation of the strengthening alpha '-martensite on the strain hardening behavior.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Mechanical Behavior of 316L Stainless Steel after Strain Hardening
    Li, Kaishang
    Peng, Jian
    Peng, Jian
    2017 INTERNATIONAL CONFERENCE ON MECHANICAL, MATERIAL AND AEROSPACE ENGINEERING (2MAE 2017), 2017, 114
  • [2] Strain hardening behaviour of 316L austenitic stainless steel
    Singh, KK
    MATERIALS SCIENCE AND TECHNOLOGY, 2004, 20 (09) : 1134 - 1142
  • [3] Ultrasonic Characterization of Strain Hardening Behavior in AISI 316L Austenitic Stainless Steel
    P. Behjati
    A. Najafizadeh
    H. Vahid Dastjerdi
    R. Mahdavi
    Metallurgical and Materials Transactions A, 2011, 42 : 543 - 547
  • [4] Ultrasonic Characterization of Strain Hardening Behavior in AISI 316L Austenitic Stainless Steel
    Behjati, P.
    Najafizadeh, A.
    Dastjerdi, H. Vahid
    Mahdavi, R.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (03): : 543 - 547
  • [5] Cyclic Deformation Behavior of a 316L Austenitic Stainless Steel Processed by High Pressure Torsion
    Renk, Oliver
    Hohenwarter, Anton
    Pippan, Reinhard
    ADVANCED ENGINEERING MATERIALS, 2012, 14 (11) : 948 - 954
  • [6] Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
    Ho, Hsin Shen
    Sun, LingLi
    Liu, KunKun
    Niu, PengHui
    Zhang, ErLiang
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2019, 110 (04) : 287 - 296
  • [7] Twinning behavior in deformation of SLM 316L stainless steel
    Yang, Dengcui
    Zhao, Yan
    Kan, Xinfeng
    Chu, Xiaohong
    Sun, Hang
    Zhao, Zhengzhi
    Sun, Jiquan
    Wang, Haibing
    MATERIALS RESEARCH EXPRESS, 2022, 9 (09)
  • [8] Corrosion and biological behavior of nanostructured 316L stainless steel processed by severe plastic deformation
    Hajizadeh, K.
    Maleki-Ghaleh, H.
    Arabi, A.
    Behnamian, Y.
    Aghaie, E.
    Farrokhi, A.
    Hosseini, M. G.
    Fathi, M. H.
    SURFACE AND INTERFACE ANALYSIS, 2015, 47 (10) : 978 - 985
  • [9] The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel
    Astafurova, Elena
    Fortuna, Anastasiya
    Melnikov, Evgenii
    Astafurov, Sergey
    MATERIALS, 2023, 16 (08)
  • [10] The behaviour and deformation mechanisms for 316L stainless steel deformed at cryogenic temperatures
    Li, Suning
    Withers, Philip J.
    Kabra, Saurabh
    Yan, Kun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 880