Three-Dimensional Structural Stability and Local Electrostatic Potential at Point Mutations in Spike Protein of SARS-CoV-2 Coronavirus

被引:3
|
作者
Hristova, Svetlana H. [1 ]
Zhivkov, Alexandar M. [2 ]
机构
[1] Med Univ Sofia, Med Fac, Dept Med Phys & Biophys, Zdrave St 2, Sofia 1431, Bulgaria
[2] St Kliment Ohridski Sofia Univ, Sci Res Ctr, 8 Dragan Tsankov Blvd, Sofia 1164, Bulgaria
关键词
SARS-CoV-2; coronavirus variants; point mutations; S-protein; ACE2; receptor; protein electrostatics; isoelectric point; surface electric potential; folding energy; contagiousness; RECEPTOR-BINDING; CYTOCHROME-C; SERVER; VISUALIZATION; PREDICTION; SDM;
D O I
10.3390/ijms25042174
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The contagiousness of SARS-CoV-2 beta-coronavirus is determined by the virus-receptor electrostatic association of its positively charged spike (S) protein with the negatively charged angiotensin converting enzyme-2 (ACE2 receptor) of the epithelial cells. If some mutations occur, the electrostatic potential on the surface of the receptor-binding domain (RBD) could be altered, and the S-ACE2 association could become stronger or weaker. The aim of the current research is to investigate whether point mutations can noticeably alter the electrostatic potential on the RBD and the 3D stability of the S1-subunit of the S-protein. For this purpose, 15 mutants with different hydrophilicity and electric charge (positive, negative, or uncharged) of the substituted and substituting amino acid residues, located on the RBD at the S1-ACE2 interface, are selected, and the 3D structure of the S1-subunit is reconstructed on the base of the crystallographic structure of the S-protein of the wild-type strain and the amino acid sequence of the unfolded polypeptide chain of the mutants. Then, the Gibbs free energy of folding, isoelectric point, and pH-dependent surface electrostatic potential of the S1-subunit are computed using programs for protein electrostatics. The results show alterations in the local electrostatic potential in the vicinity of the mutant amino acid residue, which can influence the S-ACE2 association. This approach allows prediction of the relative infectivity, transmissibility, and contagiousness (at equal social immune status) of new SARS-CoV-2 mutants by reconstruction of the 3D structure of the S1-subunit and calculation of the surface electrostatic potential.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Stability and expression of SARS-CoV-2 spike-protein mutations
    Baek, Kristoffer T.
    Mehra, Rukmankesh
    Kepp, Kasper P.
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2023, 478 (06) : 1269 - 1280
  • [2] Stability and expression of SARS-CoV-2 spike-protein mutations
    Kristoffer T. Bæk
    Rukmankesh Mehra
    Kasper P. Kepp
    Molecular and Cellular Biochemistry, 2023, 478 : 1269 - 1280
  • [3] Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination
    Sternberg, Ariane
    Naujokat, Cord
    LIFE SCIENCES, 2020, 257
  • [4] SARS-CoV-2 Variants Are Selecting for Spike Protein Mutations That Increase Protein Stability
    Shorthouse, David
    Hall, Benjamin A.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (09) : 4152 - 4155
  • [5] Mutations and Evolution of the SARS-CoV-2 Spike Protein
    Magazine, Nicholas
    Zhang, Tianyi
    Wu, Yingying
    McGee, Michael C.
    Veggiani, Gianluca
    Huang, Weishan
    VIRUSES-BASEL, 2022, 14 (03):
  • [6] Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants
    Deepali Gupta
    Priyanka Sharma
    Mandeep Singh
    Mukesh Kumar
    A. S. Ethayathulla
    Punit Kaur
    Cellular and Molecular Life Sciences, 2021, 78 : 7967 - 7989
  • [7] Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants
    Gupta, Deepali
    Sharma, Priyanka
    Singh, Mandeep
    Kumar, Mukesh
    Ethayathulla, A. S.
    Kaur, Punit
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2021, 78 (24) : 7967 - 7989
  • [8] The SARS-CoV-2 spike protein: balancing stability and infectivity
    Imre Berger
    Christiane Schaffitzel
    Cell Research, 2020, 30 : 1059 - 1060
  • [9] The SARS-CoV-2 spike protein: balancing stability and infectivity
    Berger, Imre
    Schaffitzel, Christiane
    CELL RESEARCH, 2020, 30 (12) : 1059 - 1060
  • [10] Structural and functional impact by SARS-CoV-2 Omicron spike mutations
    Zhang, Jun
    Cai, Yongfei
    Lavine, Christy L.
    Peng, Hanqin
    Zhu, Haisun
    Anand, Krishna
    Tong, Pei
    Gautam, Avneesh
    Mayer, Megan L.
    Rits-Volloch, Sophia
    Wang, Shaowei
    Sliz, Piotr
    Wesemann, Duane R.
    Yang, Wei
    Seaman, Michael S.
    Lu, Jianming
    Xiao, Tianshu
    Chen, Bing
    CELL REPORTS, 2022, 39 (04):