An Observer-Based Reinforcement Learning Solution for Model-Following Problems

被引:0
|
作者
Abouheaf, Mohammed I. [1 ]
Vamvoudakis, Kyriakos G. [2 ]
Mayyas, Mohammad A. [1 ]
Hashim, Hashim A. [3 ]
机构
[1] Bowling Green State Univ, Robot Engn, Bowling Green, OH 43403 USA
[2] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON K1S 5B6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
TIME; TRACKING; GAMES;
D O I
10.1109/CDC49753.2023.10384059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel model-free solution for a multi-objective model-following control problem, utilizing an observer-based adaptive learning approach. The goal is to regulate model-following error dynamics and optimize process variables simultaneously. Integral reinforcement learning is employed to adapt three key strategies, including observation, closed-loop stabilization, and reference trajectory tracking. Implementation uses an approximate projection estimation method under mild conditions on learning parameters.
引用
收藏
页码:7976 / 7981
页数:6
相关论文
共 50 条
  • [1] Online Observer-Based Inverse Reinforcement Learning
    Self, Ryan
    Coleman, Kevin
    Bai, He
    Kamalapurkar, Rushikesh
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 1959 - 1964
  • [2] Online Observer-Based Inverse Reinforcement Learning
    Self, Ryan
    Coleman, Kevin
    Bai, He
    Kamalapurkar, Rushikesh
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06): : 1922 - 1927
  • [3] PERFECT EXPLICIT MODEL-FOLLOWING CONTROL SOLUTION TO IMPERFECT MODEL-FOLLOWING CONTROL-PROBLEMS
    DURHAM, WC
    LUTZE, FH
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) : 391 - 397
  • [4] An Online Model-Following Projection Mechanism Using Reinforcement Learning
    Abouheaf, Mohammed I.
    Hashim, Hashim A.
    Mayyas, Mohammad A.
    Vamvoudakis, Kyriakos G.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 6959 - 6966
  • [5] AN OBSERVER-BASED SOLUTION OF INVERSE HEAT-CONDUCTION PROBLEMS
    MARQUARDT, W
    AURACHER, H
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1990, 33 (07) : 1545 - 1562
  • [6] Observer-based robust integral reinforcement learning for attitude regulation of quadrotors
    Chen, Zitao
    Zhong, Weifeng
    Xie, Shengli
    Zhang, Yun
    Yuen, Chau
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [7] Pilot Performance Modeling via Observer-Based Inverse Reinforcement Learning
    Town, Jared
    Morrison, Zachary
    Kamalapurkar, Rushikesh
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (06) : 2444 - 2451
  • [8] Observer-Based Reinforcement Learning Control for Electric Servo Mechanisms With Disturbance
    Harbin Institute Of Technology, Control And Simulation Center, Harbin, China
    不详
    Proc. Chin. Control Decis. Conf., CCDC, (3607-3612):
  • [9] Nonuniqueness and Convergence to Equivalent Solutions in Observer-based Inverse Reinforcement Learning
    Town, Jared
    Morrison, Zachary
    Kamalapurkar, Rushikesh
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3989 - 3994
  • [10] Observer-Based Deep Reinforcement Learning for Robust Missile Guidance and Control
    Wang, Wenwen
    Chen, Zhihua
    IEEE ACCESS, 2025, 13 : 32769 - 32780