Enhancement of hollow Ni/CeO2-Co3O4 for CO2 methanation: From CO2 adsorption and activation by synergistic effects

被引:35
|
作者
Hu, Feiyang [1 ,2 ]
Jin, Chengkai [1 ]
Wu, Rundong [1 ]
Li, Claudia [2 ]
Song, Guoqiang [2 ]
Gani, Terry Zhi Hao [2 ]
Lim, Kang Hui [2 ]
Guo, Wei [2 ]
Wang, Tianchang [2 ]
Ding, Shunmin [1 ]
Ye, Runping [1 ]
Lu, Zhang-Hui [3 ]
Feng, Gang [1 ]
Zhang, Rongbin [1 ]
Kawi, Sibudjing [2 ]
机构
[1] Nanchang Univ, Inst Appl Chem, Coll Chem & Chem Engn, Key Lab Jiangxi Prov Environm & Energy Catalysis, 999 Xuefu Rd, Nanchang 330031, Peoples R China
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[3] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni; Chemical adsorption; Synergistic effects; Reaction mechanism; LOW-TEMPERATURE; CATALYTIC-OXIDATION; OXYGEN VACANCIES; CO3O4; PERFORMANCE; HYDROGENATION; EVOLUTION; SUPPORT; NI; CONVERSION;
D O I
10.1016/j.cej.2023.142108
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 absorption and activation play key roles in the process of CO2 methanation, but revealing the mechanism and synergistic effects are still challenges, especially in some complicated routes. Herein, an optimized hollow Ni/CeO2-Co3O4 catalyst is shown to be capable of CO2 absorption and activation, the performance could be attributed to the strong synergistic effects among each component. In addition, the respective role was verified that the Co3O4 and CeO2 contributed to the CO2 adsorption and subsequently coupled with Ni for CO2 activation. Furthermore, in-situ DRIFTS were used to demonstrate the hydrogenation mechanisms, and the promotion of CO2 absorption and CH4 selectivity was confirmed in Ni/CeO2-Co3O4. The DFT results verified the synergistic effects of the established catalysts, which could also be a universal strategy for the catalysts designation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts
    Zhao, Kechao
    Li, Zhenhua
    Bian, Li
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2016, 10 (02) : 273 - 280
  • [2] CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts
    Kechao Zhao
    Zhenhua Li
    Li Bian
    Frontiers of Chemical Science and Engineering, 2016, 10 : 273 - 280
  • [3] On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts
    Konishcheva, M. V.
    Potemkin, D. I.
    Badmaev, S. D.
    Snytnikov, P. V.
    Paukshtis, E. A.
    Sobyanin, V. A.
    Parmon, V. N.
    TOPICS IN CATALYSIS, 2016, 59 (15-16) : 1424 - 1430
  • [4] On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts
    M. V. Konishcheva
    D. I. Potemkin
    S. D. Badmaev
    P. V. Snytnikov
    E. A. Paukshtis
    V. A. Sobyanin
    V. N. Parmon
    Topics in Catalysis, 2016, 59 : 1424 - 1430
  • [5] CeO2-Co3O4 catalysts for CO oxidation
    Xu, XY
    Li, JJ
    Hao, ZP
    JOURNAL OF RARE EARTHS, 2006, 24 (02) : 172 - 176
  • [6] CeO2-Co3O4 Catalysts for CO Oxidation
    许秀艳
    李进军
    郝郑平
    JournalofRareEarths, 2006, (02) : 172 - 176
  • [7] MECHANISMS OF METHANATION OF CO AND CO2 OVER NI
    FUJITA, S
    TERUNUMA, H
    NAKAMURA, M
    TAKEZAWA, N
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1991, 30 (06) : 1146 - 1151
  • [8] Promoted Ni-Co-Al2O3 nanostructured catalysts for CO2 methanation
    Shafiee, Parisa
    Alavi, Seyed Mehdi
    Rezaei, Mehran
    Jokar, Farzad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (04) : 2399 - 2411
  • [9] The Ni/ZrO2 catalyst and the methanation of CO and CO2
    da Silva, Daniela C. D.
    Letichevsky, Sonia
    Borges, Luiz E. P.
    Appel, Lucia G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) : 8923 - 8928
  • [10] CO and CO2 Co-Methanation on Ni/CeO2-ZrO2 Soft-Templated Catalysts
    Atzori, Luciano
    Rombi, Elisabetta
    Meloni, Daniela
    Sini, Maria Franca
    Monaci, Roberto
    Cutrufello, Maria Giorgia
    CATALYSTS, 2019, 9 (05):