ON THE HALF-SPACE OR EXTERIOR PROBLEMS OF THE 3D COMPRESSIBLE ELASTIC NAVIER-STOKES-POISSON EQUATIONS

被引:2
|
作者
Wu, Wenpei [1 ]
Wang, Yong [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] South China Normal Univ, Sch Math Sci, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Peoples R China
关键词
elastic Navier-Stokes-Poisson equations; half-space problems; exterior problems; global solution; BOUNDARY-VALUE-PROBLEMS; RAYLEIGH-TAYLOR PROBLEM; GLOBAL EXISTENCE; VISCOELASTIC FLUID; DECAY-RATES; MODEL;
D O I
10.1137/22M1526162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the three-dimensional compressible elastic Navier-Stokes-Poisson equations induced by a new bipolar viscoelastic model derived here, which model the motion of the compressible electrically conducting fluids. The various boundary conditions for the electrostatic potential including the Dirichlet and Neumann boundary conditions are considered. By using a unified energy method, we obtain the unique global H-2 solution near a constant equilibrium state in the half-space or exterior of an obstacle. The elasticity plays a crucial role in establishing the L-2 estimate for the electrostatic field.
引用
收藏
页码:2996 / 3043
页数:48
相关论文
共 50 条
  • [1] COMPRESSIBLE NAVIER-STOKES-POISSON EQUATIONS
    Hsiao Ling
    Li Hailiang
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (06) : 1937 - 1948
  • [2] COMPRESSIBLE NAVIER-STOKES-POISSON EQUATIONS
    肖玲
    李海梁
    ActaMathematicaScientia, 2010, 30 (06) : 1937 - 1948
  • [3] Global well-posedness of the compressible elastic Navier-Stokes-Poisson equations in half-spaces
    Shen, Rong
    Wang, Yong
    Wu, Yunshun
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [4] Asymptotic behavior of the compressible navier-stokes-poisson equations
    Wang, Shu
    Zhang, Li-Li
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2010, 36 (06): : 850 - 858
  • [5] Global solutions to compressible Navier-Stokes-Poisson and Euler-Poisson equations of plasma on exterior domains
    Liu, Hairong
    Luo, Tao
    Zhong, Hua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9936 - 10001
  • [6] Free boundary value problem to 3D spherically symmetric compressible Navier-Stokes-Poisson equations
    Kong, Huihui
    Li, Hai-Liang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [7] Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations
    Wang, Yong
    Wu, Wenpei
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 1356 - 1383
  • [8] Quasi-neutral and zero-viscosity limits of Navier-Stokes-Poisson equations in the half-space
    Ju, Qiangchang
    Xu, Xin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) : 867 - 896
  • [9] Existence and stability of stationary solution to compressible Navier-Stokes-Poisson equations in half line
    Wang, Lei
    Zhang, Guojing
    Zhang, Kaijun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 145 : 97 - 117
  • [10] Stability of weak solutions for the compressible Navier-Stokes-Poisson equations
    Ru-xu Lian
    Ming-jie Li
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 597 - 606