Disease insights from medical data using interpretable risk prediction models

被引:0
|
作者
Tang, Alice [1 ]
Sirota, Marina [1 ]
机构
[1] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
来源
NATURE AGING | 2024年 / 4卷 / 03期
关键词
D O I
10.1038/s43587-024-00585-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Our study demonstrates how clinical data can be used to build machine-learning models to predict the risk of Alzheimer's disease (AD) onset and can be integrated with knowledge networks to gain insights into the pathophysiology of AD, with a focus on a better understanding of disease sex differences.
引用
收藏
页码:293 / 294
页数:2
相关论文
共 50 条
  • [2] Interpretable and accurate prediction models for metagenomics data
    Prifti, Edi
    Chevaleyre, Yann
    Hanczar, Blaise
    Belda, Eugeni
    Danchin, Antoine
    Clement, Karine
    Zucker, Jean-Daniel
    GIGASCIENCE, 2020, 9 (03):
  • [4] Polyaxial Rock Failure Criteria: Insights from Explainable and Interpretable Data-Driven Models
    Hadi Fathipour-Azar
    Rock Mechanics and Rock Engineering, 2022, 55 : 2071 - 2089
  • [5] Research on Disease Prediction Models Based on Imbalanced Medical Data Sets
    Chen X.
    Liu P.-H.
    Sun Y.-Z.
    Shen X.
    Zhang L.
    Wang X.-Q.
    Sun X.-P.
    Cheng W.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (03): : 596 - 609
  • [6] Intelligent diagnosis of Kawasaki disease from real-world data using interpretable machine learning models
    Duan, Yifan
    Wang, Ruiqi
    Huang, Zhilin
    Chen, Haoran
    Tang, Mingkun
    Zhou, Jiayin
    Hu, Zhengyong
    Hu, Wanfei
    Chen, Zhenli
    Qian, Qing
    Wang, Haolin
    HELLENIC JOURNAL OF CARDIOLOGY, 2025, 81 : 38 - 48
  • [7] Individual risk prediction using data beyond the medical clinic
    Califf, Robert M.
    Harrell, Frank E., Jr.
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2018, 190 (32) : E947 - E948
  • [8] Assessing Risk Prediction Models Using Individual Participant Data From Multiple Studies
    Pennells, Lisa
    Kaptoge, Stephen
    White, Ian R.
    Thompson, Simon G.
    Wood, Angela M.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (05) : 621 - 632
  • [9] EVALUATING RISK-PREDICTION MODELS USING DATA FROM ELECTRONIC HEALTH RECORDS
    Wang, Le
    Shaw, Pamela A.
    Mathelier, Hansie M.
    Kimmel, Stephen E.
    French, Benjamin
    ANNALS OF APPLIED STATISTICS, 2016, 10 (01): : 286 - 304
  • [10] Interpretable prediction of mRNA abundance from promoter sequence using contextual regression models
    Wang, Song
    Wang, Wei
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (02)