Cyclobutanedicarboxylate Metal-Organic Frameworks as a Platform for Dramatic Amplification of Pore Partition Effect

被引:25
|
作者
Wang, Wei [1 ]
Yang, Huajun [2 ]
Chen, Yichong [1 ]
Bu, Xianhui [2 ]
Feng, Pingyun [1 ]
机构
[1] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[2] Calif State Univ, Dept Chem & Biochem, Long Beach, CA 90840 USA
关键词
SPACE-PARTITION; CARBON-DIOXIDE; COORDINATION; ETHYLENE; DESIGN; INSTALLATION; ACETYLENE; SERIES; MOFS;
D O I
10.1021/jacs.3c05980
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrafinetuning of MOF structures at subangstrom or picometerlevels can help improve separation selectivity for gases with subtledifferences. However, for MOFs with a large enough pore size, theeffect from ultrafine tuning on sorption can be muted. Here we showan integrative strategy that couples extreme pore compression withultrafine pore tuning. This strategy is made possible by unique combinationof two features of the partitioned acs (pacs) platform: multimodular framework and exceptional tolerance towardisoreticular replacement. Specifically, we use one module (ligand1, L1) to shrink the pore size to an extreme minimum on pacs. A compression ratio of about 30% was achieved (based on the unitcell c/a ratio) from prototypical1,4-benzenedicarboxylate-pacs to trans-1,3-cyclobutanedicarboxylate-pacs. This is followedby using another module (ligand 2, L2) for ultrafine pore tuning (<3%compression). This L1-L2 strategy increases the C2H2/CO2 selectivity from 2.6 to 20.8 and givesrise to an excellent experimental breakthrough performance. As theshortest cyclic dicarboxylate that mimics p-benzene-basedmoieties using a bioisosteric (BIS) strategy on pacs, trans-1,3-cyclobutanedicarboxylate offers newopportunities in MOF chemistry.
引用
收藏
页码:17551 / 17556
页数:6
相关论文
共 50 条
  • [1] Pore Space Partition in Metal-Organic Frameworks
    Zhai, Quan-Guo
    Bu, Xianhui
    Zhao, Xiang
    Li, Dong-Sheng
    Feng, Pingyun
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (02) : 407 - 417
  • [2] Pore space partition of metal-organic frameworks for gas storage and separation
    Hong, Anh N.
    Yang, Huajun
    Bu, Xianhui
    Feng, Pingyun
    ENERGYCHEM, 2022, 4 (04)
  • [3] Pore Chemistry of Metal-Organic Frameworks
    Ji, Zhe
    Wang, Haoze
    Canossa, Stefano
    Wuttke, Stefan
    Yaghi, Omar M.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (41)
  • [4] METAL-ORGANIC FRAMEWORKS Improving pore performance
    Cooper, Andrew I.
    Rosseinsky, Matthew J.
    NATURE CHEMISTRY, 2009, 1 (01) : 26 - 27
  • [5] Effect of pore size and shape on the thermal conductivity of metal-organic frameworks
    Babaei, Hasan
    McGaughey, Alan J. H.
    Wilmer, Christopher E.
    CHEMICAL SCIENCE, 2017, 8 (01) : 583 - 589
  • [6] MOFomics: Computational pore characterization of metal-organic frameworks
    First, Eric L.
    Floudas, Christodoulos A.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 165 : 32 - 39
  • [7] Pore engineering of metal-organic frameworks for ethylene purification
    Liu, Shuang
    Dong, Qiubing
    Zhou, Yanli
    Wang, Suna
    Duan, Jingui
    DALTON TRANSACTIONS, 2020, 49 (47) : 17093 - 17105
  • [8] Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks
    Feng, Liang
    Day, Gregory S.
    Wang, Kun-Yu
    Yuan, Shuai
    Zhou, Hong-Cai
    CHEM, 2020, 6 (11): : 2902 - 2923
  • [9] Progress in pore size regulation of metal-organic frameworks
    Yuan Y.
    Wang M.
    Zhou Y.
    Wang Z.
    Wang J.
    Huagong Xuebao/CIESC Journal, 2020, 71 (02): : 429 - 450
  • [10] Pore-filling contamination in metal-organic frameworks
    Glover, Joseph
    Besley, Elena
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (36) : 23616 - 23624