Extremal numbers of hypergraph suspensions of even cycles

被引:0
|
作者
Mukherjee, Sayan [1 ,2 ]
机构
[1] Blueqat Res, Tokyo 1506139, Japan
[2] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
关键词
GRAPHS; CONSTRUCTIONS;
D O I
10.1016/j.ejc.2024.103935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For fixed k >= 2, determining the order of magnitude of the number of edges in an n-vertex bipartite graph not containing C-2k, the cycle of length 2k, is a long-standing open problem. We consider an extension of this problem to triple systems. In particular, we prove that the maximum number of triples in an n-vertex triple system which does not contain a C-6 in the link of any vertex, has order of magnitude n(7/3). Additionally, we construct new families of dense C-6-free bipartite graphs with n vertices and n(4/3) edges in order of magnitude. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Extremal Numbers of Cycles Revisited
    Conlon, David
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (05): : 464 - 466
  • [2] Extremal Numbers for Odd Cycles
    Fueredi, Zoltan
    Gunderson, David S.
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (04): : 641 - 645
  • [3] Extremal numbers for cycles in a hypercube
    Axenovich, Maria
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 1 - 3
  • [4] Relative Turan numbers for hypergraph cycles
    Spiro, Sam
    Verstraete, Jacques
    DISCRETE MATHEMATICS, 2021, 344 (10)
  • [5] Hypergraph Turan numbers of linear cycles
    Fueredi, Zoltan
    Jiang, Tao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 123 (01) : 252 - 270
  • [6] Hypergraph Turan Numbers of Vertex Disjoint Cycles
    Gu, Ran
    Li, Xue-liang
    Shi, Yong-tang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 229 - 234
  • [7] EXTREMAL SKEW ENERGY OF DIGRAPHS WITH NO EVEN CYCLES
    Li, J.
    Li, X.
    Lian, H.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (01) : 37 - 49
  • [8] Turán theorems for even cycles in random hypergraph
    Nie, Jiaxi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 167 : 23 - 54
  • [9] Extremal Even Polygonal Chains on Wiener Numbers
    Cao, Yuefen
    Yang, Weiling
    Zhang, Fuji
    POLYCYCLIC AROMATIC COMPOUNDS, 2020, 40 (05) : 1616 - 1623
  • [10] Degree Ramsey numbers for even cycles
    Tait, Michael
    DISCRETE MATHEMATICS, 2018, 341 (01) : 104 - 108