Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma

被引:4
|
作者
Schoen, Felix [1 ,2 ]
Kieslich, Aaron [2 ,3 ]
Nebelung, Heiner [1 ,2 ]
Riediger, Carina [2 ,4 ]
Hoffmann, Ralf-Thorsten [1 ,2 ]
Zwanenburg, Alex [2 ,3 ,5 ,6 ]
Loeck, Steffen [2 ,3 ]
Kuehn, Jens-Peter [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst & Polyclin Diagnost & Intervent Radiol, Fac Med, Dresden, Germany
[2] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] Tech Univ Dresden, OncoRay Natl Ctr Radiat Res Oncol, Fac Med, Dresden, Germany
[4] Tech Univ Dresden, Dept Visceral Thorac & Vasc Surg, Fac Med, D-01307 Dresden, Germany
[5] Natl Ctr Tumor Dis Dresden NCT UCC, Dresden, Germany
[6] German Canc Res Ctr, Heidelberg, Germany
关键词
FEATURE ROBUSTNESS; MODEL; DIAGNOSIS; PATIENT; POOR; SIZE; MELD; CT;
D O I
10.1038/s41598-023-50451-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To examine the comparative robustness of computed tomography (CT)-based conventional radiomics and deep-learning convolutional neural networks (CNN) to predict overall survival (OS) in HCC patients. Retrospectively, 114 HCC patients with pretherapeutic CT of the liver were randomized into a development (n = 85) and a validation (n = 29) cohort, including patients of all tumor stages and several applied therapies. In addition to clinical parameters, image annotations of the liver parenchyma and of tumor findings on CT were available. Cox-regression based on radiomics features and CNN models were established and combined with clinical parameters to predict OS. Model performance was assessed using the concordance index (C-index). Log-rank tests were used to test model-based patient stratification into high/low-risk groups. The clinical Cox-regression model achieved the best validation performance for OS (C-index [95% confidence interval (CI)] 0.74 [0.57-0.86]) with a significant difference between the risk groups (p = 0.03). In image analysis, the CNN models (lowest C-index [CI] 0.63 [0.39-0.83]; highest C-index [CI] 0.71 [0.49-0.88]) were superior to the corresponding radiomics models (lowest C-index [CI] 0.51 [0.30-0.73]; highest C-index [CI] 0.66 [0.48-0.79]). A significant risk stratification was not possible (p > 0.05). Under clinical conditions, CNN-algorithms demonstrate superior prognostic potential to predict OS in HCC patients compared to conventional radiomics approaches and could therefore provide important information in the clinical setting, especially when clinical data is limited.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma
    Felix Schön
    Aaron Kieslich
    Heiner Nebelung
    Carina Riediger
    Ralf-Thorsten Hoffmann
    Alex Zwanenburg
    Steffen Löck
    Jens-Peter Kühn
    Scientific Reports, 14
  • [2] A Deep Learning Radiomics Analysis for Survival Prediction in Esophageal Cancer
    Wang, Junxiu
    Zeng, Jianchao
    Li, Hongwei
    Yu, Xiaoqing
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [3] Deep-learning cardiac motion analysis for human survival prediction
    Bello, Ghalib A.
    Dawes, Timothy J. W.
    Duan, Jinming
    Biffi, Carlo
    de Marvao, Antonio
    Howard, Luke S. G. E.
    Gibbs, J. Simon R.
    Wilkins, Martin R.
    Cook, Stuart A.
    Rueckert, Daniel
    O'Regan, Declan P.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (02) : 95 - +
  • [4] Deep-learning cardiac motion analysis for human survival prediction
    Ghalib A. Bello
    Timothy J. W. Dawes
    Jinming Duan
    Carlo Biffi
    Antonio de Marvao
    Luke S. G. E. Howard
    J. Simon R. Gibbs
    Martin R. Wilkins
    Stuart A. Cook
    Daniel Rueckert
    Declan P. O’Regan
    Nature Machine Intelligence, 2019, 1 : 95 - 104
  • [5] Deep learning of radiomics features for survival prediction in NSCLC and Head and Neck carcinoma
    Jochems, A.
    Hoebers, F.
    De Ruysscher, D.
    Leijenaar, R.
    Walsh, S.
    O'Sullivan, B.
    Bussink, J.
    Monshouwer, R.
    Leemans, R.
    Lambin, P.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S866 - S866
  • [6] Predicting survival after hepatocellular carcinoma resection using deep-learning on histological slides
    Saillard, Charlie
    Schmauch, Benoit
    Laifa, Oumeima
    Moarii, Matahi
    Toldo, Sylvain
    Zaslavskiy, Mikhail
    Pronier, Elodie
    Laurent, Alexis
    Amaddeo, Giuliana
    Regnault, Helene
    Sommacale, Daniele
    Ziol, Marianne
    Pawlotsky, Jean-Michel
    Mule, Sebastien
    Luciani, Alain
    Wainrib, Gilles
    Clozel, Thomas
    Courtiol, Pierre
    Calderaro, Julien
    JOURNAL OF HEPATOLOGY, 2020, 73 : S381 - S381
  • [7] Survival Prediction of Patients with Bladder Cancer after Cystectomy Based on Clinical, Radiomics, and Deep-Learning Descriptors
    Sun, Di
    Hadjiiski, Lubomir
    Gormley, John
    Chan, Heang-Ping
    Caoili, Elaine M.
    Cohan, Richard H.
    Alva, Ajjai
    Gulani, Vikas
    Zhou, Chuan
    CANCERS, 2023, 15 (17)
  • [8] A deep survival interpretable radiomics model of hepatocellular carcinoma patients
    Wei, Lise
    Owen, Dawn
    Rosen, Benjamin
    Guo, Xinzhou
    Cuneo, Kyle
    Lawrence, Theodore S.
    Ten Haken, Randall
    El Naqa, Issam
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 82 : 295 - 305
  • [9] Temporal Encoded Deep Learning Radiomics Model for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma
    Jiahui Hu
    Xi Deng
    Yukai Pan
    Yutao Wang
    Wei Jin
    Journal of Medical and Biological Engineering, 2023, 43 : 623 - 632
  • [10] Temporal Encoded Deep Learning Radiomics Model for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma
    Hu, Jiahui
    Deng, Xi
    Pan, Yukai
    Wang, Yutao
    Jin, Wei
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (05) : 623 - 632