A priori and a posteriori error analysis of hp spectral element discretization for optimal control problems with elliptic equations

被引:1
|
作者
Lin, Xiuxiu [1 ]
Chen, Yanping [1 ]
Huang, Yunqing [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Comp Sci, Hunan Key Lab Comp & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal control problem; Control constraint; hp spectral element method; A priori error estimates; A posteriori error estimates; INTEGRAL STATE; APPROXIMATION; PDE;
D O I
10.1016/j.cam.2022.114960
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. A priori and a posteriori error estimates of hp spectral element method for an elliptic optimal control problem with L2-norm control constraint are investigated in this paper. We then present the optimality conditions and set up hp spectral element discretization scheme. Based on some important interpolation operators and suitable immediate variable, a priori error estimates for this problem in hp spectral element discretization are established carefully. Furthermore, using some interpolation operators, a rigorous posteriori error estimates of hp spectral element approximation are also proved for control and the coupled state approximation in L2 - H1-norm and L2 - L2 -norm, respectively. Such estimators can be used to construct reliable adaptive spectral element methods for optimal control problems. Finally, the error analysis results are confirmed by numerical results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem
    Qiming Wang
    Zhaojie Zhou
    Numerical Algorithms, 2022, 90 : 989 - 1015
  • [2] A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem
    Wang, Qiming
    Zhou, Zhaojie
    NUMERICAL ALGORITHMS, 2022, 90 (03) : 989 - 1015
  • [3] A posteriori error estimates of hp spectral element methods for integral state constrained elliptic optimal control problems
    Chen, Yanping
    Zhang, Jinling
    Huang, Yunqing
    Xu, Yeqing
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 42 - 58
  • [4] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [5] A PRIORI ERROR ANALYSIS FOR DISCRETIZATION OF SPARSE ELLIPTIC OPTIMAL CONTROL PROBLEMS IN MEASURE SPACE
    Pieper, Konstantin
    Vexler, Boris
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (04) : 2788 - 2808
  • [6] A PRIORI AND POSTERIORI ERROR ESTIMATES OF LEGENDRE GALERKIN SPECTRAL METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Huang, Fei
    Lin, Li
    Cai, Fei
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 989 - 1006
  • [7] Optimal control of the Stokes equations:: A priori error analysis for finite element discretization with postprocessing
    Roesch, Arnd
    Vexler, Boris
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 1903 - 1920
  • [8] A Posteriori Error Estimates for hp Spectral Element Approximation of Elliptic Control Problems with Integral Control and State Constraints
    Zhang, Jinling
    Chen, Yanping
    Null, Yunqing Huang
    Huang, Fenglin
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (02) : 469 - 493
  • [9] A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations
    Mora, David
    Rivera, Gonzalo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 322 - 357
  • [10] A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems
    Meidner, D.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 645 - 652