Optimization of a soil type prediction method based on the deep learning model and vegetation characteristics

被引:1
|
作者
Suwardi [1 ]
Sutiarso, Lilik [1 ]
Wirianata, Herry [2 ]
Nugroho, Andri Prima [1 ]
Sukarman [3 ]
Primananda, Septa [3 ]
Dasrial, Moch [3 ]
Hariadi, Badi [3 ]
机构
[1] Univ Gadjah Mada, Fac Agr Technol, Dept Agr & Biosyst Engn, Yogyakarta, Indonesia
[2] Inst Pertanian Stiper Instiper, Fac Agr, Dept Agrotechnol, Yogyakarta, Indonesia
[3] Wilmar Int Plantat, Palembang, Central Kaliman, Indonesia
来源
PLANT SCIENCE TODAY | 2024年 / 11卷 / 01期
关键词
Characteristics; deep learning; identification; spodosols; vegetation; DIVERSITY;
D O I
10.14719/pst.2926
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The structure and composition of forest vegetation plays an important role in different ecosystem functions and services. This study aimed to identifying soil types based on vegetation characteristics using a deep learning model in the High Conservation Value (HCV) area of Central Kalimantan, spanning 632.04 hectares. The data on vegetation were collected using a combination method between line transect and quadratic plots were placed. The development of a deep learning model was based on the results of a vegetation survey and the processing of aerial photos using the Feature Classifier method. The results of applying a deep learning model could provide a relatively accurate and consistent prediction in identifying soil types (Entisols 62%, Spodosols 90%, Ultisols 90% accuracy). The composition of vegetation community in Ultisols was dominated of seedling and tree (closed canopy), meanwhile in Entisols and Spodosols was dominated of seedling and sapling (dominantly open canopy). Ultisols exhibited the highest species richness (57 species), followed by Spodosols (31 species) and Entisols (14 species). Ultisols, Entisols, and Spodosols displayed even species distribution(J' close to 1) without dominance of certain species (D < 0.5). The species diversity index was at a low to moderate level (H' < 3), while the species richness index remained at a very low level (D_mg > 3.5).
引用
收藏
页码:480 / 499
页数:20
相关论文
共 50 条
  • [1] Prediction of soil moisture based on a deep learning model
    Geng Q.-T.
    Liu Z.
    Li Q.-L.
    Yu F.-H.
    Li X.-N.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (08): : 2430 - 2436
  • [2] Research on soil moisture prediction model based on deep learning
    Cai, Yu
    Zheng, Wengang
    Zhang, Xin
    Zhangzhong, Lili
    Xue, Xuzhang
    PLOS ONE, 2019, 14 (04):
  • [3] Deep Learning Approach on Prediction of Soil Consolidation Characteristics
    Kim, Mintae
    Senturk, Muharrem A.
    Tan, Rabia K.
    Ordu, Ertugrul
    Ko, Junyoung
    BUILDINGS, 2024, 14 (02)
  • [4] A novel prediction based portfolio optimization model using deep learning
    Ma, Yilin
    Wang, Weizhong
    Ma, Qianting
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 177
  • [5] LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model
    Rather, Akhter Mohiuddin
    EURO JOURNAL ON DECISION PROCESSES, 2021, 9
  • [6] Prediction and model optimization of shearer memory cutting trajectory based on deep learning
    Chen W.
    Nan P.
    Yan X.
    Peng J.
    Meitan Xuebao/Journal of the China Coal Society, 2020, 45 (12): : 4209 - 4215
  • [7] Graphic Design Optimization Method Based on Deep Reinforcement Learning Model
    Zhang, Jiwen
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023,
  • [8] Inflation Prediction Method Based on Deep Learning
    Yang, Cheng
    Guo, Shuhua
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [9] A Prediction Method of Localizability Based on Deep Learning
    Gao, Yang
    Wang, Shu Qi
    Li, Jing Hang
    Hu, Meng Qi
    Xia, Hong Yao
    Hu, Hui
    Wang, Lai Jun
    IEEE ACCESS, 2020, 8 : 110103 - 110115
  • [10] Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization
    Shlezinger, Nir
    Eldar, Yonina C.
    Boyd, Stephen P.
    IEEE ACCESS, 2022, 10 : 115384 - 115398