EXISTENCE AND ASYMPTOTIC STABILITY FOR GENERALIZED ELASTICITY EQUATION WITH VARIABLE EXPONENT

被引:4
|
作者
Dilmi, Mohamed [1 ]
Otmani, Sadok [2 ]
机构
[1] Univ Blida 1, Dept Math, LAMDA RO Lab, POB 270 Route Soumaa, Blida, Algeria
[2] Univ Kasdi Merbah Ouargla, Dept Math, Ouargla, Algeria
关键词
asymptotic stability; variable exponent Lebesgue and Sobolev spaces; generalized elasticity equation; WAVE-EQUATION; SPACES;
D O I
10.7494/OpMath.2023.43.3.409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new mathematical model describing the deformations of an isotropic nonlinear elastic body with variable exponent in dynamic regime. We assume that the stress tensor sigma(p)(center dot) has the form sigma(p(center dot))(u) = (2 mu + vertical bar d(u)|p((center dot)-2)) d(u) + lambda Tr (d(u)) I-3, where u is the displacement field, mu, lambda are the given coefficients d(center dot) and I-3 are the deformation tensor and the unit tensor, respectively. By using the Faedo-Galerkin techniques and a compactness result we prove the existence of the weak solutions, then we study the asymptotic behaviour stability of the solutions.
引用
收藏
页码:409 / 428
页数:20
相关论文
共 50 条