Bond graph modeling with linear quadratic integral control synthesis of a robotic digit in a human impaired hand for anthropomorphic coordination

被引:3
|
作者
Iqbal, Maryam [1 ]
Imtiaz, Junaid [1 ]
Mahmood, Asif [1 ]
机构
[1] Bahria Univ, Dept Elect Engn, Islamabad 44000, Pakistan
关键词
Bond graph modeling; central nervous system; partial hand impairment; integral control; Bode's sensitivity analysis; DESIGN; OPTIMIZATION; EXOSKELETON; PROSTHESIS;
D O I
10.1177/01423312221111643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The movement coordination of the robotic digit(s) with the central nervous system (CNS) and the natural digit(s) is a complex task that needs to be executed successfully in an anthropomorphic hand. The task is challenging to resolve because of the CNS. We developed a theoretical framework for the biomechanical model of a partially impaired human hand utilizing the bond graph modeling technique by incorporating inertia, muscle, and visco-elastic dynamics. The research presents a partially impaired human hand model with a robotic digit and four natural digits having 21 degrees of freedom. We formulated a linear quadratic Gaussian (LQG) integral control technique for the 21st-order model to regulate the flexion and extension movement of the robotic digit while considering the disturbances. We have simulated the modeling scheme in MATLAB/Simulink. The flexion and extension movement and the angular velocity of the robotic finger are shown to be following all the physiological constraints of a natural finger. The settling time is achieved at 1.6 seconds, with a maximum flexion angle of 0.135 rad. The sensitivity analysis shows that the model is robust against disturbances. The simulation results exhibit the application of this scheme toward upper limb rehabilitation and improvement in prosthetic and exoskeleton designs.
引用
收藏
页码:400 / 413
页数:14
相关论文
共 6 条