Gearbox Fault Diagnosis Using REMD, EO and Machine Learning Classifiers

被引:5
|
作者
Afia, Adel [1 ,2 ]
Gougam, Fawzi [2 ]
Rahmoune, Chemseddine [2 ]
Touzout, Walid [2 ]
Ouelmokhtar, Hand [2 ]
Benazzouz, Djamel [2 ]
机构
[1] Houari Boumediene Univ Sci & Technol, Dept Mech & Proc Engn, Babzouar, Alger, Algeria
[2] Univ Mhamed Bougara Boumerdes, Dept Mech Engn, Solid Mech & Syst Lab LMSS, Boumerdes, Algeria
关键词
Fault diagnosis; Gearbox; Feature extraction; Feature selection; Feature classification; Vibration signals; FEATURE-EXTRACTION; EQUILIBRIUM OPTIMIZER; ALGORITHM; CLASSIFICATION; ENSEMBLE; NETWORK; DESIGN; SYSTEM; COLONY; EMD;
D O I
10.1007/s42417-023-01144-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gearboxes are critical equipment in many industrial applications such as machine manufacturing, petrochemical industry, renewable energy, etc. However, due to their complex structure and regularly harsh working environment, gearboxes are inevitably prone to a variety of faults and defects during operation. Therefore, intelligent condition monitoring techniques are crucially important for early gear and bearing fault recognition and detection to avoid any industrial failure due to machine breakdowns. In this paper, an intelligent algorithm for gear and bearing fault diagnosis is suggested based on several approaches mainly: robust empirical mode decomposition (REMD), time domain features are used for the feature extraction step, while equilibrium optimizer (EO) in the feature selection. For feature classification, random forest (RF), ensemble tree (ET) and nearest neighbors (KNN) are chosen as classifiers. REMD is used to alleviate the mode mixing problem by monitoring the sifting process and selecting the optimal iteration number. EO is a recent optimization approach based on the laws of physical theory in nature. EO reduces the high-dimensional data problem, by filtering redundant features, and increasing model generalization efficiency by avoiding the over-fitting curse. The proposed approach is applied to real-time vibration signals from a healthy gearbox and four different faulty gear and bearing conditions. According to our approach, data signals are decomposed by REMD to several intrinsic mode functions (IMFs). Thereafter, time-domain features are computed for each IMF to construct the feature matrix for every gear and bearing health status. After that, EO is applied to every matrix in the feature selection step. Finally, RF, ET and KNN are used to calculate classification accuracy and give the confusion matrix. Compared to several feature selection techniques, experimental results prove the efficiency of the proposed approach in detecting, identifying, and classifying all gear and bearing defects even under different operating modes.
引用
收藏
页码:4673 / 4697
页数:25
相关论文
共 50 条
  • [1] Gearbox Fault Diagnosis Using REMD, EO and Machine Learning Classifiers
    Adel Afia
    Fawzi Gougam
    Chemseddine Rahmoune
    Walid Touzout
    Hand Ouelmokhtar
    Djamel Benazzouz
    Journal of Vibration Engineering & Technologies, 2024, 12 : 4673 - 4697
  • [2] Engine gearbox fault diagnosis using machine learning approach
    Vernekar, Kiran
    Kumar, Hemantha
    Gangadharan, K., V
    JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2018, 24 (03) : 345 - 357
  • [3] Transformer Incipient Fault Diagnosis using Machine Learning Classifiers
    Cheemala, Vaishnavi
    Asokan, Avinash Nelson
    Preetha, P.
    4TH INTERNATIONAL CONFERENCE ON CONDITION ASSESSMENT TECHNIQUES IN ELECTRICAL SYSTEMS (CATCON 2019), 2019,
  • [4] A Machine Learning Approach for Gearbox System Fault Diagnosis
    Vrba, Jan
    Cejnek, Matous
    Steinbach, Jakub
    Krbcova, Zuzana
    ENTROPY, 2021, 23 (09)
  • [5] Brake fault diagnosis using a voting ensemble of machine learning classifiers
    Viswanathan, Sivagurunathan
    Sridharan, Naveen Venkatesh
    Rakkiyannan, Jegadeeshwaran
    Vaithiyanathan, Sugumaran
    RESULTS IN ENGINEERING, 2024, 23
  • [6] Fault diagnosis of automobile gearbox based on machine learning techniques
    Praveenkumar, T.
    Saimurugan, M.
    Krishnakumar, P.
    Ramachandran, K. I.
    12TH GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT (GCMM - 2014), 2014, 97 : 2092 - 2098
  • [7] GEARBOX FAULT DIAGNOSIS OPTIMIZATION USING CONVENTIONAL NEURAL NETWORKS AND MACHINE LEARNING METHODS
    Zakaria M.
    Elias H.A.
    Mounira D.
    International Journal of Mechatronics and Applied Mechanics, 2022, 12 : 41 - 46
  • [8] Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
    Toma, Rafia Nishat
    Prosvirin, Alexander E.
    Kim, Jong-Myon
    SENSORS, 2020, 20 (07)
  • [9] Research on Fault Diagnosis of Planetary Gearbox Based on Hierarchical Extreme Learning Machine
    Sun, Guodong
    Wang, Youren
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 682 - 685
  • [10] Gearbox fault diagnosis using improved feature representation and multitask learning
    Sohaib, Muhammad
    Munir, Shahid
    Islam, M. M. Manjurul
    Shin, Jungpil
    Tariq, Faisal
    Ar Rashid, S. M. Mamun
    Kim, Jong-Myon
    FRONTIERS IN ENERGY RESEARCH, 2022, 10