Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives

被引:7
|
作者
Togo, Maria Vittoria [1 ]
Mastrolorito, Fabrizio [1 ]
Orfino, Angelica [1 ]
Graps, Elisabetta Anna [2 ]
Tondo, Anna Rita [1 ]
Altomare, Cosimo Damiano [1 ]
Ciriaco, Fulvio [3 ]
Trisciuzzi, Daniela [1 ]
Nicolotti, Orazio [1 ]
Amoroso, Nicola [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Pharm Pharmaceut Sci, I-70125 Bari, Italy
[2] ARESS Puglia Agenzia Reg Strateg Salute Sociale, Presidenza Reg Puglia, Bari, Italy
[3] Univ Bari Aldo Moro, Dept Chem, Bari, Italy
关键词
Alternative methods; developmental toxicity; explainable artificial intelligence; machine learning models; predictive toxicology; IN-SILICO METHODS; MACHINE LEARNING TECHNIQUES; DRUG DISCOVERY; MULTIOBJECTIVE OPTIMIZATION; COMPUTATIONAL TOXICOLOGY; BIOCONCENTRATION FACTOR; CLASSIFICATION MODELS; ALTERNATIVE METHODS; RISK-ASSESSMENT; RANDOM FOREST;
D O I
10.1080/17425255.2023.2298827
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
IntroductionThe application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being.Areas coveredThis review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies.Expert opinionThe limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.
引用
收藏
页码:561 / 577
页数:17
相关论文
共 50 条
  • [1] Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research
    Zhang, Zhibo
    Hamadi, Hussam Al
    Damiani, Ernesto
    Yeun, Chan Yeob
    Taher, Fatma
    IEEE ACCESS, 2022, 10 : 93104 - 93139
  • [2] TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity
    Togo, Maria Vittoria
    Mastrolorito, Fabrizio
    Ciriaco, Fulvio
    Trisciuzzi, Daniela
    Tondo, Anna Rita
    Gambacorta, Nicola
    Bellantuono, Loredana
    Monaco, Alfonso
    Leonetti, Francesco
    Bellotti, Roberto
    Altomare, Cosimo Damiano
    Amoroso, Nicola
    Nicolotti, Orazio
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (01) : 56 - 66
  • [3] Artificial intelligence in gastroenterology: A state-of-the-art review
    Kroner, Paul T.
    Engels, Megan Ml
    Glicksberg, Benjamin S.
    Johnson, Kipp W.
    Mzaik, Obaie
    van Hooft, Jeanin E.
    Wallace, Michael B.
    El-Serag, Hashem B.
    Krittanawong, Chayakrit
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (40) : 6794 - 6824
  • [4] Artificial intelligence in gastroenterology: A state-of-the-art review
    Paul T Kr?ner
    Megan ML Engels
    Benjamin S Glicksberg
    Kipp W Johnson
    Obaie Mzaik
    Jeanin E van Hooft
    Michael B Wallace
    Hashem B El-Serag
    Chayakrit Krittanawong
    World Journal of Gastroenterology, 2021, 27 (40) : 6794 - 6824
  • [5] State-of-the-art of artificial intelligence in medicinal chemistry
    Bajorath, Jurgen
    FUTURE SCIENCE OA, 2021, 7 (06):
  • [6] State-of-the-art and adoption of artificial intelligence in retailing
    Weber, Felix Dominik
    Schuette, Reinhard
    DIGITAL POLICY REGULATION AND GOVERNANCE, 2019, 21 (03) : 264 - 279
  • [7] Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review
    Momtazmanesh, Sara
    Nowroozi, Ali
    Rezaei, Nima
    RHEUMATOLOGY AND THERAPY, 2022, 9 (05) : 1249 - 1304
  • [8] Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review
    Sara Momtazmanesh
    Ali Nowroozi
    Nima Rezaei
    Rheumatology and Therapy, 2022, 9 : 1249 - 1304
  • [9] Artificial Intelligence in Software Requirements Engineering: State-of-the-Art
    Liu, Kaihua
    Reddivari, Sandeep
    Reddivari, Kalyan
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2022), 2022, : 106 - 111
  • [10] Review of State-of-the-Art in Deep Learning Artificial Intelligence
    Shakirov V.V.
    Solovyeva K.P.
    Dunin-Barkowski W.L.
    Optical Memory and Neural Networks, 2018, 27 (2) : 65 - 80