Analysis of Mechanical and Environmental Effects of Utilizing Waste Glass for the Creation of Sustainable Ultra-High Performance Concrete

被引:7
|
作者
Ismaeel, Anas Malik [1 ]
Usman, Fathoni [2 ]
Hayder, Gasim [3 ,4 ]
Al-Ani, Yasir [5 ]
机构
[1] Univ Tenaga Nas, Coll Grad Studies, Kajang 43000, Malaysia
[2] Univ Tenaga Nas, Inst Energy Infrastructure, Kajang 43000, Malaysia
[3] Univ Tenaga Nas, Inst Energy Infrastructure IEI, Kajang 43000, Selangor Darul, Malaysia
[4] Univ Tenaga Nas, Coll Engn, Civil Engn Dept, Kajang 43000, Selangor Darul, Malaysia
[5] Univ Anbar, Coll Engn, Dept Dams & Water Resources Engn, Ramadi, Anbar Province, Iraq
来源
关键词
waste glass; Ultra -High Performance; Concrete; mechanical properties; environmental impact; pollution; construction; BLAST-FURNACE SLAG; POWDER; CEMENT; CONSTRUCTION; DURABILITY; MORTARS; DESIGN; FRESH;
D O I
10.18280/acsm.470208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Typically, waste glass industry contributes to various harmful environmental impacts. Glass manufacturing relies on considerably extreme temperature values. 22 million tons in Europe and 95 million tons of carbon dioxide are generated globally per annum. Meantime, scholars noted that million tons of waste glass produced worldwide yearly could cause elevated levels of water and air pollution due to the accumulation of waste glass in landfills. In this setting, researchers dedicated numerous efforts to create feasible strategies and active solutions to alleviate all these significant numbers. One of those solutions is the waste glass recycling. It is reported that recycling waste glass provides efficient air pollution and water contamination mitigation by roughly 20% and 50%, respectively. One sector that took into account this valuable idea is the concrete industry. Scientists discovered that substituting specific ratios of cement/ sand with waste glass (including 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%) in concrete could achieve substantial added values in terms of mechanical properties, such as better durability, abrasion resistance, flexural strength, compressive strength, and splitting tensile strength. Few, at the same time, found that adding waste glass into concrete could reduce facilities' cooling and heating loads due to the decline in the concrete's thermal conductivity. Nonetheless, the available literature lacks adequate proofs associated with this fact. Additionally, different peer-reviewed articles did not address the application of this concept on Ultra-High Performance Concrete (UHPC) but on regular concrete. To bridge this knowledge gap, this manuscript is guided to provide more databases on the influence of cement/ sand replacement with waste glass on concrete's thermal characteristics yet paying special attention on UHPC. A comprehensive review is implemented in this context to shed light on these aspects. Based on the thorough review carried out in this article, the outcomes revealed that employing waste glass in concrete and UHPC could attain multiple advantages, like (i) Enhancing variant UHPC and concrete's mechanical properties (containing split tensile strength, compressive strength, compaction, durability, flexural strength, bulk density, and shrinkage resistance), (ii) fostering thermal conductivity and thermal resistance, helping make the building of this new concrete mix more energy efficient, (iii) minimizing glass industry's adverse environmental effect, (iii) preserving natural resources, and (iv) reducing the overall budget of UHPC production. However, it is crucial to conduct further experimental and numerical analyses on waste glass replacement with concrete to offer more pieces of evidences and facts of the importance of waste glass replacement in boosting UHPC thermal performance in small and large-scale facilities.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 50 条
  • [1] Investigation of the Physical Mechanical Properties and Durability of Sustainable Ultra-High Performance Concrete with Recycled Waste Glass
    Amin, Mohamed
    Agwa, Ibrahim Saad
    Mashaan, Nuha
    Mahmood, Shaker
    Abd-Elrahman, Mahmoud H.
    SUSTAINABILITY, 2023, 15 (04)
  • [2] Enhancing sustainability of ultra-high performance concrete utilizing high-volume waste glass powder
    Tahwia, Ahmed M.
    Essam, Ahmed
    Tayeh, Bassam A.
    Abd Elrahman, Mohamed
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [3] Investigations of portland limestone cement and waste glass powder for sustainable ultra-high performance concrete
    Nia, Saeed Bozorgmehr
    Nyland, Anette
    Wivast, Jennifer
    Kioumarsi, Mahdi
    Shafei, Behrouz
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [4] Development of sustainable ultra-high performance concrete
    Zhang, Jisong
    Zhao, Yinghua
    3RD INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2017, 61
  • [5] Development of sustainable ultra-high performance concrete recycling aluminum production waste
    Tran, Hang
    Sorelli, Luca
    Hisseine, Ousmane Ahmat
    Bouchard, David
    Brial, Victor
    Sanchez, Thomas
    Conciatori, David
    Ouellet-Plamondon, Claudiane
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 371
  • [6] Recycling of contaminated waste glass in ultra-high performance concrete: Impurities impact
    Zhao, Xudong
    Lu, Jian-Xin
    Lv, Xuesen
    Tian, Weichen
    Cyr, Martin
    Tagnit-Hamou, Arezki
    Poon, Chi Sun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 437
  • [7] Preparation and Properties of Green Ultra-high Performance Concrete Containing Waste Glass
    Wei H.
    Liu T.
    Zou D.
    Zhou A.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2021, 24 (03): : 492 - 498
  • [8] Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass
    Tahwia, Ahmed M.
    Heniegal, Ashraf M.
    Abdellatief, Mohamed
    Tayeh, Bassam A.
    Abd Elrahman, Mohamed
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [9] Development and characteristics of sustainable ultra-high performance concrete utilizing coal gangue ceramsite
    Chen, Dongdong
    Ding, Qingjun
    Zhang, Gaozhan
    Zhou, Peng
    Deng, Yitong
    Wan, Chaoqun
    Wang, Xinpeng
    Xu, Qiyang
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 459
  • [10] Study on mechanical properties and microstructure of green ultra-high performance concrete prepared by recycling waste glass powder
    Yan, Pei
    Chen, Bing
    Zhu, Mingzheng
    Meng, Xiangrui
    JOURNAL OF BUILDING ENGINEERING, 2024, 82