Bi-Legendrian rack colorings of Legendrian knots

被引:0
|
作者
Kimura, Naoki [1 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku, Tokyo 1698555, Japan
关键词
Legendrian knot; contact manifold; rack; quandle; Thurston-Bennequin number; INVARIANTS;
D O I
10.1142/S0218216523500293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a bi-Legendrian rack and show that a bi-Legendrian rack coloring number is an invariant of Legendrian knots. We prove that bi-Legendrian rack coloring numbers can distinguish all Legendrian unknots with the same Thurston-Bennequin number. We also consider pairs of Legendrian knots which cannot be distinguished by bi-Legendrian rack coloring numbers.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] LEGENDRIAN RACK INVARIANTS OF LEGENDRIAN KNOTS
    Ceniceros, Jose
    Elhamdadi, Mohamed
    Nelson, Sam
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (03): : 623 - 639
  • [2] BI-LEGENDRIAN STRUCTURES AND PARACONTACT GEOMETRY
    Cappelletti Montano, Beniamino
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (03) : 487 - 504
  • [3] CONTACT METRIC (κ, μ)-SPACES AS BI-LEGENDRIAN MANIFOLDS
    Cappelletti Montano, Beniamino
    Di Terlizzi, Luigia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) : 373 - 386
  • [4] Legendrian knots and monopoles
    Mrowka, Tomasz
    Rollin, Yann
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1 - 69
  • [5] Categorification of Legendrian knots
    Kuwagaki, Tatsuki
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (03) : 421 - 437
  • [6] Geometry of Legendrian knots
    Pancholi, Dishant M.
    Pandit, Suhas
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (13)
  • [7] An Atlas of Legendrian Knots
    Chongchitmate, Wutichai
    Ng, Lenhard
    EXPERIMENTAL MATHEMATICS, 2013, 22 (01) : 26 - 37
  • [8] On equivalence of Legendrian knots
    Dynnikov, I. A.
    Shastin, V. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (06) : 1125 - 1127
  • [9] ON INVARIANTS FOR LEGENDRIAN KNOTS
    Stipsicz, Andras I.
    Vertesi, Vera
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (01) : 157 - 177
  • [10] TOPOLOGICALLY TRIVIAL LEGENDRIAN KNOTS
    Eliashberg, Yakov
    Fraser, Maia
    JOURNAL OF SYMPLECTIC GEOMETRY, 2009, 7 (02) : 77 - 127