Optimal connectivity results for spheres in the curve graph of low and medium complexity surfaces

被引:0
|
作者
Heinonen, Helena [1 ]
Klein-Seetharaman, Roshan [2 ]
Sun, Minghan [3 ]
机构
[1] McGill Univ, Dept Math, 805 Sherbrooke St West, Montreal, PQ, Canada
[2] Yale Univ, Dept Math, 219 Prospect St, New Haven, CT 06511 USA
[3] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
来源
关键词
Curve graph; connectivity; spheres;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Answering a question of Wright, we show that spheres of any radius are always connected in the curve graph of surfaces Sigma(2,0), Sigma(1,3), and Sigma(0,6), and the union of two consecutive spheres is always connected for Sigma(0,5) and Sigma(1,2). We also classify the connected components of spheres of radius 2 in the curve graph of Sigma(0,5) and Sigma(1,2).
引用
收藏
页码:351 / 368
页数:18
相关论文
共 3 条
  • [1] Optimal, Low-Complexity Beamforming for Discrete Phase Reconfigurable Intelligent Surfaces
    Sanchez, Juan
    Bengtsson, Erik
    Rusek, Fredrik
    Flordelis, Jose
    Zhao, Kun
    Tufvesson, Fredrik
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [2] Computing Hypervolume Contributions in Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results
    Emmerich, Michael T. M.
    Fonseca, Carlos M.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 121 - 135
  • [3] Low Complexity Optimal Soft-Input Soft-Output Demodulation of MSK Based on Factor Graph
    Tong, Sheng
    Huang, Defeng
    Guo, Qinghua
    Xi, Jiangtao
    Yu, Yanguang
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (07) : 1139 - 1142