Reinforcement learning-based load balancing for heavy traffic Internet of Things

被引:1
|
作者
Lei, Jianjun [1 ]
Liu, Jie [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
关键词
Internet of Things; RPL; Load balance; Energy efficiency; Deep reinforcement learning;
D O I
10.1016/j.pmcj.2024.101891
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming to large-scale data transmission requirements of resource -constrained IoT (Internet of Things) devices, the routing protocol for low power lossy network (RPL) is expected to handle the load imbalance and high energy consumption in heavy traffic scenarios. This paper proposes a novel RPL routing optimization Algorithm based on deep Reinforcement Learning (referred to as RARL), which employs the centralized training and decentralized execution architecture. Hence, the RARL can provide the intelligent parent selection policy for all nodes while improving the training efficiency of deep reinforcement learning (DRL) model. Furthermore, we integrate a new local observation into the RARL by exploiting multiple routing metrics and design a comprehensive reward function for enhancing the load -balance and energy efficiency. Meanwhile, we also optimize the Trickle timer mechanism for adaptively controlling the delivery of DIO messages, which further improves the interaction efficiency with environment of DRL model. Extensive simulation experiments are conducted to evaluate the effectiveness of RARL under various scenarios. Compared with some existing methods, the simulation results demonstrate the significant performance of RARL in terms of network lifetime, queue loss ratio, and packet reception ratio.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Reinforcement Learning-Based Network Traffic Prediction Mechanism in Intelligent Internet of Things
    Nie, Laisen
    Ning, Zhaolong
    Obaidat, Mohammad S.
    Sadoun, Balqies
    Wang, Huizhi
    Li, Shengtao
    Guo, Lei
    Wang, Guoyin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 2169 - 2180
  • [2] A Reinforcement Learning-Based Service Model for the Internet of Things
    Cabrera, Christian
    Clarke, Siobhan
    SERVICE-ORIENTED COMPUTING (ICSOC 2021), 2021, 13121 : 790 - 799
  • [3] A Deep Reinforcement Learning-Based Caching Strategy for Internet of Things
    Nasehzadeh, Ali
    Wang, Ping
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 969 - 974
  • [4] A reinforcement learning-based load balancing algorithm for fog computing
    Niloofar Tahmasebi-Pouya
    Mehdi Agha Sarram
    Seyedakbar Mostafavi
    Telecommunication Systems, 2023, 84 : 321 - 339
  • [5] A reinforcement learning-based load balancing algorithm for fog computing
    Tahmasebi-Pouya, Niloofar
    Sarram, Mehdi Agha
    Mostafavi, Seyedakbar
    TELECOMMUNICATION SYSTEMS, 2023, 84 (03) : 321 - 339
  • [6] Reinforcement learning-based dynamic load balancing in edge computing networks
    Esmaeili, Mohammad Esmaeil
    Khonsari, Ahmad
    Sohrabi, Vahid
    Dadlani, Aresh
    COMPUTER COMMUNICATIONS, 2024, 222 : 188 - 197
  • [7] Load Balancing for Ultradense Networks: A Deep Reinforcement Learning-Based Approach
    Xu, Yue
    Xu, Wenjun
    Wang, Zhi
    Lin, Jiaru
    Cui, Shuguang
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (06): : 9399 - 9412
  • [8] Deep Reinforcement Learning Based Load Balancing for Heterogeneous Traffic in Datacenter Networks
    Hu, Jinbin
    Luo, Wangqing
    He, Yi
    Wang, Jing
    Zhang, Dengyong
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT III, 2024, 14489 : 270 - 289
  • [9] A Reinforcement Learning-Based Framework for Crowdsourcing in Massive Health Care Internet of Things
    Almagrabi, Alaa Omran
    Ali, Rashid
    Alghazzawi, Daniyal
    AlBarakati, Abdullah
    Khurshaid, Tahir
    BIG DATA, 2022, 10 (02) : 161 - 170
  • [10] Reinforcement Learning-Based Anomaly Detection for Internet of Things Distributed Ledger Technology
    Bikos, Anastasios N.
    Kumar, Sathish
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,