Phase behavior of biodegradable poly(L-lactic acid) in supercritical solvents and cosolvents

被引:4
|
作者
Behera, Uma Sankar [1 ]
Prasad, Siddhant Kumar [1 ]
Baskaran, Divya [1 ]
Byun, Hun-Soo [1 ]
机构
[1] Chonnam Natl Univ, Dept Chem & Biomol Engn, Yeosu 59626, Jeonnam, South Korea
基金
新加坡国家研究基金会;
关键词
Phase behavior; Poly(L-lactic acid); Supercritical fluids; Cloud-point; High pressure; CLOUD-POINT; PLUS COSOLVENT; CARBON-DIOXIDE; METHACRYLATE); MIXTURES; POLYMERS; SYSTEMS; CO2;
D O I
10.1016/j.jcou.2023.102658
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(L-lactic acid) (PLLA), a biodegradable polymer from plant sources, is widely employed in biomedical applications for its biocompatibility and versatile mechanical properties. However, comprehending its phase behavior in various solvents poses a challenge for broader applications. In this study, the phase behavior of the polymer was investigated in various solvent and cosolvent media and combinations at a wide range of temperatures and pressures to gain insight into the polymer properties. PLLA of varying intrinsic viscosity (IV): [0.15 dl/g, with an estimated weight average molecular weight (M-w) range of approximately: 1600 to 2400 g/mol; 1.0 dl/g (M-w): 100,000 g/mol); and 1.8 dl/g (M-w): 80,000 to 100,000 g/mol] was employed for this study. The phase behavior of the polymer across different compositions of PLLA and solvent (CH2F2, CHF3, CO2, DME, F-22) in a wide range of temperatures from 333 to 425 K and high pressure 1.55 to 172 MPa was investigated. Miscibility of PLLA in DME and F-22 is predicted to be higher with increasing in concentration than the other cosolvents. Furthermore, in the case of the supercritical solvent CHF3 and DME the phase transition pressure curve of PLLA was observed to exhibit a lower critical solution temperature (LCST) type with a positive gradient with increasing temperature. However, lower phase transition pressure was noticed for lower molecular weight PLLA in supercritical solvent CHF3 and DME, i.e., of the order IV 0.15 dl/g<IV 1.0 dl/g<IV 1.8 dl/g. The phase transition pressure of PLLA (IV 1.8 dl/g) in solvent CO2 with increasing the concentration of co-solvent (F-22, DME) from 0 to similar to 97 wt% shifted from UCST to LCST type. The LCST curve of PLLA (IV 0.15) in DME intersects with the vapor(V)-liquid(L) curve at T: 353 K and P below 5 MPa, indicating the coexistence of V+L phases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Impact of cosolvent concentration of ternary and binary solution for biodegradable poly(D,L-lactic acid) under supercritical solvents
    Prasad, Siddhant Kumar
    Behera, Uma Sankar
    Lee, Chang-Woo
    Byun, Hun-Soo
    JOURNAL OF SUPERCRITICAL FLUIDS, 2024, 207
  • [2] Crystallization and Melting Behavior of Biodegradable Poly(L-lactic acid)/Talc Composites
    Cai, Yan-Hua
    E-JOURNAL OF CHEMISTRY, 2012, 9 (03) : 1569 - 1574
  • [3] Crystallization behavior of poly(L-lactic acid)
    Di Lorenzo, ML
    EUROPEAN POLYMER JOURNAL, 2005, 41 (03) : 569 - 575
  • [4] Crystallization behavior of poly(L-lactic acid)
    Yasuniwa, Munehisa
    Tsubakihara, Shinsuke
    Iura, Koji
    Ono, Yoshinori
    Dan, Yusuke
    Takahashi, Kazuhisa
    POLYMER, 2006, 47 (21) : 7554 - 7563
  • [5] PRECIPITATION OF POLY(L-LACTIC ACID) AND COMPOSITE POLY(L-LACTIC ACID) - PYRENE PARTICLES BY RAPID EXPANSION OF SUPERCRITICAL SOLUTIONS
    TOM, JW
    DEBENEDETTI, PG
    JEROME, R
    JOURNAL OF SUPERCRITICAL FLUIDS, 1994, 7 (01): : 9 - 29
  • [6] Development of novel biodegradable poly (L-lactic acid) stent
    Igaki, Keiji
    Iwamoto, Masaharu
    Yamane, Hideki
    Saito, Kenji
    Zairyo/Journal of the Society of Materials Science, Japan, 2000, 49 (09) : 1030 - 1035
  • [7] Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate)
    Park, JW
    Im, SS
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 86 (03) : 647 - 655
  • [8] Phase Separation at the Surface of Poly(ethylene oxide)-Containing Biodegradable Poly(L-lactic acid) Blends
    Yu, Jinxiang
    Mahoney, Christine M.
    Fahey, Albert J.
    Hicks, Wesley L., Jr.
    Hard, Robert
    Bright, Frank V.
    Gardella, Joseph A., Jr.
    LANGMUIR, 2009, 25 (19) : 11467 - 11471
  • [9] Poly(l-Lactic Acid)/Poly(Butylene Succinate) Biobased Biodegradable Blends
    Di Lorenzo, Maria Laura
    POLYMER REVIEWS, 2021, 61 (03) : 457 - 492
  • [10] GENERAL CRYSTALLIZATION BEHAVIOR OF POLY(L-LACTIC ACID)
    KALB, B
    PENNINGS, AJ
    POLYMER, 1980, 21 (06) : 607 - 612