Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student-t Distribution

被引:0
|
作者
Montoya, Alejandro Monzon [1 ,2 ]
机构
[1] Univ Fed Minas Gerais, Dept Estat, Ave Antonio Carlos 6-627,Campus Pampulha, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Nacl San Cristobal Huamanga, Dept Matemat & Fis, Ave Independencia s-n,Ciudad Univ, Ayacucho 05001, Ayacucho, Peru
关键词
Censored data; ECM algorithm; measurement error models; student-t distribution; COMPARATIVE CALIBRATION; MAXIMUM-LIKELIHOOD; INCOMPLETE-DATA;
D O I
10.1007/s13571-023-00316-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the local influence approach is studied in regression models with measurement errors for multivariate censored responses under the Student-t distribution. The multivariate Student-t distribution and the multivariate normal, distributions of the independent normal class, are studied and used to compare various measuring instruments. The ECM algorithm is used to obtain maximum likelihood estimates of the model parameters and using the log-likelihood function of the complete data we obtain measures of local influence based on the methodology proposed by Zhu and Lee (Journal of the Royal Statistical Society, Series B 63:121-126, 2001) and Lee and Xu (Computational Statistics and Data Analysis 45:321-341, 2004). Finally, the described methodologies are used in real data analysis that illustrates the usefulness of the approach.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] Local Influence in Regression Models with Measurement Errors and Censored Data Considering the Student–t Distribution
    Alejandro Monzón Montoya
    Sankhya B, 2024, 86 : 91 - 108
  • [2] Influence diagnostics for Student-t censored linear regression models
    Massuia, Monique B.
    Barbosa Cabral, Celso Romulo
    Matos, Larissa A.
    Lachos, Victor H.
    STATISTICS, 2015, 49 (05) : 1074 - 1094
  • [3] Censored autoregressive regression models with Student-t innovations
    Valeriano, Katherine A. L.
    Schumacher, Fernanda L.
    Galarza, Christian E.
    Matos, Larissa A.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 804 - 828
  • [4] Multivariate measurement error models based on Student-t distribution under censored responses
    Matos, Larissa A.
    Castro, Luis M.
    Cabral, Celso R. B.
    Lachos, Victor H.
    STATISTICS, 2018, 52 (06) : 1395 - 1416
  • [5] Student-t censored regression model: properties and inference
    Reinaldo B. Arellano-Valle
    Luis M. Castro
    Graciela González-Farías
    Karla A. Muñoz-Gajardo
    Statistical Methods & Applications, 2012, 21 : 453 - 473
  • [6] DSGE MODELS WITH STUDENT-t ERRORS
    Chib, Siddhartha
    Ramamurthy, Srikanth
    ECONOMETRIC REVIEWS, 2014, 33 (1-4) : 152 - 171
  • [7] Student-t censored regression model: properties and inference
    Arellano-Valle, Reinaldo B.
    Castro, Luis M.
    Gonzalez-Farias, Graciela
    Munoz-Gajardo, Karla A.
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04): : 453 - 473
  • [8] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Lachos, Victor H.
    Cabral, Celso R. B.
    Prates, Marcos O.
    Dey, Dipak K.
    COMPUTATIONAL STATISTICS, 2019, 34 (01) : 123 - 152
  • [9] Local influence for Student-t partially linear models
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1462 - 1478
  • [10] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Víctor H. Lachos
    Celso R. B. Cabral
    Marcos O. Prates
    Dipak K. Dey
    Computational Statistics, 2019, 34 : 123 - 152