Rota's basis conjecture for matroids with density close to one

被引:0
|
作者
McGuinness, Sean [1 ]
机构
[1] Thompson Rivers Univ, Kamloops, BC, Canada
关键词
Matroid; Basis; Rota's basis conjecture; Girth; LATIN SQUARES; ALON-TARSI;
D O I
10.1016/j.aam.2023.102593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rota's basis conjecture (RBC) states that given a collection 13 of n bases in a matroid M of rank n, one can always find n disjoint rainbow bases with respect to 13. We show that if M is a matroid having n + k elements, then one can construct n - k3 disjoint rainbow bases.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Rota's basis conjecture for paving matroids
    Geelen, Jim
    Humphries, Peter J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (04) : 1042 - 1045
  • [2] Special case of Rota?s basis conjecture on graphic matroids
    Maezawa, Shun-ichi
    Yazawa, Akiko
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [3] On Rota's Conjecture and nested separations in matroids
    Ben-David, Shalev
    Geelen, Jim
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 119 : 1 - 11
  • [4] On Rota's basis conjecture
    Geelen, Jim
    Webb, Kerri
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (03) : 802 - 804
  • [5] Halfway to Rota's Basis Conjecture
    Bucic, Matija
    Kwan, Matthew
    Pokrovskiy, Alexey
    Sudakov, Benny
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (21) : 8007 - 8026
  • [6] An online version of Rota’s basis conjecture
    Guus P. Bollen
    Jan Draisma
    Journal of Algebraic Combinatorics, 2015, 41 : 1001 - 1012
  • [7] Girth Conditions and Rota's Basis Conjecture
    Friedman, Benjamin
    McGuinness, Sean
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [8] Improved Bounds for Rota's Basis Conjecture
    Dong, Sally
    Geelen, Jim
    COMBINATORICA, 2019, 39 (02) : 265 - 272
  • [9] An online version of Rota's basis conjecture
    Bollen, Guus P.
    Draisma, Jan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (04) : 1001 - 1012
  • [10] Improved Bounds for Rota's Basis Conjecture
    Sally Dong
    Jim Geelen
    Combinatorica, 2019, 39 : 265 - 272