General dimensions of human brain morphometry inferred from genome-wide association data

被引:10
|
作者
Furtjes, Anna E. [1 ]
Arathimos, Ryan [1 ,2 ]
Coleman, Jonathan R. I. [1 ,2 ]
Cole, James H. [3 ,4 ,5 ]
Cox, Simon R. [6 ,7 ]
Deary, Ian J. [6 ,7 ]
de la Fuente, Javier [8 ,9 ,10 ]
Madole, James W. [8 ]
Tucker-Drob, Elliot M. [8 ,9 ,10 ]
Ritchie, Stuart J. [1 ]
机构
[1] Kings Coll London, Inst Psychiat Psychol & Neurosci, Social Genet & Dev Psychiat SGDP Ctr, London SE5 8AF, England
[2] South London & Maudsley NHS Trust, Natl Inst Hlth Res, Maudsley Biomed Res Ctr, London SE5 8AF, England
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimageing, London SE5 8AF, England
[4] UCL, Ctr Med Image Comp, Dept Comp Sci, London WC1V 6LJ, England
[5] UCL, Inst Neurol, Dementia Res Ctr, London WC1N 3BG, England
[6] Univ Edinburgh, Dept Psychol, Edinburgh EH8 9JZ, Scotland
[7] Univ Edinburgh, Lothian Birth Cohorts, Edinburgh EH8 9JZ, Scotland
[8] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA
[9] Univ Texas Austin, Populat Res Ctr, Austin, TX 78712 USA
[10] Univ Texas Austin, Ctr Ageing & Populat Sci, Austin, TX 78712 USA
基金
英国医学研究理事会; 英国惠康基金; 英国科研创新办公室; 英国生物技术与生命科学研究理事会;
关键词
brain age; cognitive ability; complex traits; genetics; statistical modelling; structural brain networks; structural neuroimageing; HUMAN CEREBRAL-CORTEX; ORGANIZATION; NETWORKS; FIT;
D O I
10.1002/hbm.26283
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Understanding the neurodegenerative mechanisms underlying cognitive decline in the general population may facilitate early detection of adverse health outcomes in late life. This study investigates genetic links between brain morphometry, ageing and cognitive ability. We develop Genomic Principal Components Analysis (Genomic PCA) to model general dimensions of brain-wide morphometry at the level of their underlying genetic architecture. Genomic PCA is applied to genome-wide association data for 83 brain-wide volumes (36,778 UK Biobank participants) and we extract genomic principal components (PCs) to capture global dimensions of genetic covariance across brain regions (unlike ancestral PCs that index genetic similarity between participants). Using linkage disequilibrium score regression, we estimate genetic overlap between those general brain dimensions and cognitive ageing. The first genetic PCs underlying the morphometric organisation of 83 brain-wide regions accounted for substantial genetic variance (R-2 = 40%) with the pattern of component loadings corresponding closely to those obtained from phenotypic analyses. Genetically more central regions to overall brain structure - specifically frontal and parietal volumes thought to be part of the central executive network - tended to be somewhat more susceptible towards age (r = -0.27). We demonstrate the moderate genetic overlap between the first PC underlying each of several structural brain networks and general cognitive ability (r(g) = 0.17-0.21), which was not specific to a particular subset of the canonical networks examined. We provide a multivariate framework integrating covariance across multiple brain regions and the genome, revealing moderate shared genetic etiology between brain-wide morphometry and cognitive ageing.
引用
收藏
页码:3311 / 3323
页数:13
相关论文
共 50 条
  • [1] Flax domesticationprocesses as inferred from genome-wide SNP data
    Fu, Yong-Bi
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Demographic History of Oceania Inferred from Genome-wide Data
    Wollstein, Andreas
    Lao, Oscar
    Becker, Christian
    Brauer, Silke
    Trent, Ronald J.
    Nurnberg, Peter
    Stoneking, Mark
    Kayser, Manfred
    CURRENT BIOLOGY, 2010, 20 (22) : 1983 - 1992
  • [3] Worldwide human relationships inferred from genome-wide patterns of variation
    Li, Jun Z.
    Absher, Devin M.
    Tang, Hua
    Southwick, Audrey M.
    Casto, Amanda M.
    Ramachandran, Sohini
    Cann, Howard M.
    Barsh, Gregory S.
    Feldman, Marcus
    Cavalli-Sforza, Luigi L.
    Myers, Richard M.
    SCIENCE, 2008, 319 (5866) : 1100 - 1104
  • [4] Human Genome-wide association studies
    Keith, Tim
    GENETIC ENGINEERING NEWS, 2007, 27 (02): : 22 - 22
  • [5] Human brain arousal in the resting state: a genome-wide association study
    Philippe Jawinski
    Holger Kirsten
    Christian Sander
    Janek Spada
    Christine Ulke
    Jue Huang
    Ralph Burkhardt
    Markus Scholz
    Tilman Hensch
    Ulrich Hegerl
    Molecular Psychiatry, 2019, 24 : 1599 - 1609
  • [6] Human brain arousal in the resting state: a genome-wide association study
    Jawinski, Philippe
    Kirsten, Holger
    Sander, Christian
    Spada, Janek
    Ulke, Christine
    Huang, Jue
    Burkhardt, Ralph
    Scholz, Markus
    Hensch, Tilman
    Hegerl, Ulrich
    MOLECULAR PSYCHIATRY, 2019, 24 (11) : 1599 - 1609
  • [7] Genome-wide association study of brain arteriolosclerosis
    Shade, Lincoln M. P.
    Katsumata, Yuriko
    Hohman, Timothy J.
    Nho, Kwangsik
    Saykin, Andrew J.
    Mukherjee, Shubhabrata
    Boehme, Kevin L.
    Kauwe, John S. K.
    Farrer, Lindsay A.
    Schellenberg, Gerard D.
    Haines, Jonathan L.
    Mayeux, Richard P.
    Schneider, Julie A.
    Nelson, Peter T.
    Fardo, David W.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (08): : 1437 - 1450
  • [8] Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes
    Chengcheng Zhang
    Fengqin Qin
    Xiaojing Li
    Xiangdong Du
    Tao Li
    BMC Medicine, 20
  • [9] Identification of novel proteins for sleep apnea by integrating genome-wide association data and human brain proteomes
    Gui, Jianxiong
    Meng, Linxue
    Huang, Dishu
    Wang, Lingman
    Yang, Xiaoyue
    Ding, Ran
    Han, Ziyao
    Cheng, Li
    Jiang, Li
    SLEEP MEDICINE, 2024, 114 : 92 - 99
  • [10] Identification of novel proteins associated with intelligence by integrating genome-wide association data and human brain proteomics
    Zhang, Zheng
    Zhu, Yousong
    Zhang, Junlong
    He, Wenbin
    Han, Cheng
    PLOS ONE, 2025, 20 (02):