Improved 3D Markerless Mouse Pose Estimation Using Temporal Semi-supervision

被引:9
|
作者
Li, Tianqing [1 ]
Severson, Kyle S. S. [2 ]
Wang, Fan [2 ]
Dunn, Timothy W. W. [1 ]
机构
[1] Duke Univ, Pratt Sch Engn, Dept Biomed Engn, Durham, NC 27708 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02140 USA
基金
美国国家卫生研究院;
关键词
3D pose estimation; Animal behavioral tracking; Semi-supervised learning; Markerless animal tracking;
D O I
10.1007/s11263-023-01756-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Three-dimensional markerless pose estimation from multi-view video is emerging as an exciting method for quantifying the behavior of freely moving animals. Nevertheless, scientifically precise 3D animal pose estimation remains challenging, primarily due to a lack of large training and benchmark datasets and the immaturity of algorithms tailored to the demands of animal experiments and body plans. Existing techniques employ fully supervised convolutional neural networks (CNNs) trained to predict body keypoints in individual video frames, but this demands a large collection of labeled training samples to achieve desirable 3D tracking performance. Here, we introduce a semi-supervised learning strategy that incorporates unlabeled video frames via a simple temporal constraint applied during training. In freely moving mice, our new approach improves the current state-of-the-art performance of multi-view volumetric 3D pose estimation and further enhances the temporal stability and skeletal consistency of 3D tracking.
引用
收藏
页码:1389 / 1405
页数:17
相关论文
共 50 条
  • [1] Improved 3D Markerless Mouse Pose Estimation Using Temporal Semi-supervision
    Tianqing Li
    Kyle S. Severson
    Fan Wang
    Timothy W. Dunn
    International Journal of Computer Vision, 2023, 131 : 1389 - 1405
  • [2] Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision
    Mehta, Dushyant
    Rhodin, Helge
    Casas, Dan
    Fua, Pascal
    Sotnychenko, Oleksandr
    Xu, Weipeng
    Theobalt, Christian
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 506 - 516
  • [3] Using DeepLabCut for 3D markerless pose estimation across species and behaviors
    Nath, Tanmay
    Mathis, Alexander
    Chen, An Chi
    Patel, Amir
    Bethge, Matthias
    Mathis, Mackenzie Weygandt
    NATURE PROTOCOLS, 2019, 14 (07) : 2152 - 2176
  • [4] Using DeepLabCut for 3D markerless pose estimation across species and behaviors
    Tanmay Nath
    Alexander Mathis
    An Chi Chen
    Amir Patel
    Matthias Bethge
    Mackenzie Weygandt Mathis
    Nature Protocols, 2019, 14 : 2152 - 2176
  • [5] Anipose: A toolkit for robust markerless 3D pose estimation
    Karashchuk, Pierre
    Rupp, Katie L.
    Dickinson, Evyn S.
    Walling-Bell, Sarah
    Sanders, Elischa
    Azim, Eiman
    Brunton, Bingni W.
    Tuthill, John C.
    CELL REPORTS, 2021, 36 (13):
  • [6] 3D Pose Estimation of Markerless Fish on Deep Learning
    Wang, Yuanchang
    Cao, Jianrong
    Wang, Ming
    Zhao, Qianchuan
    Gao, He
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 261 - 274
  • [7] Markerless 3D Pose Estimation System for Mouse Musculoskeletal Model Using DeepLabCut and Multiple RGB-D Cameras
    Tsuruda, Yoshito
    Akita, Shingo
    Yamanaka, Kotomi
    Yamamoto, Masataka
    Sano, Yoshitake
    Furuichi, Teiichi
    Takemura, Hiroshi
    2023 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION, SII, 2023,
  • [8] The reliability and validity of gait analysis system using 3D markerless pose estimation algorithms
    Liang, Shengyun
    Zhang, Yu
    Diao, Yanan
    Li, Guanglin
    Zhao, Guoru
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [9] Ordinal Depth Supervision for 3D Human Pose Estimation
    Pavlakos, Georgios
    Zhou, Xiaowei
    Daniilidis, Kostas
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7307 - 7316
  • [10] Validation of deep learning-based markerless 3D pose estimation
    Kosourikhina, Veronika
    Kavanagh, Diarmuid
    Richardson, Michael J.
    Kaplan, David M.
    PLOS ONE, 2022, 17 (10):