Dopant-Free Polymer Hole Transport Materials for Highly Stable and Efficient CsPbI3 Perovskite Solar Cells

被引:9
|
作者
Zhang, Zelong [1 ]
Fu, Jianfei [1 ]
Chen, Qiaoyun [1 ]
Zhang, Jiajia [1 ]
Huang, Zhezhi [1 ]
Cao, Ji [1 ]
Ji, Wenxi [2 ]
Zhang, Longgui [2 ]
Wang, Ailian [2 ]
Zhou, Yi [1 ]
Dong, Bin [3 ]
Song, Bo [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Lab Adv Optoelect Mat, Suzhou Key Lab Novel Semicond Mat & Devices, Suzhou 215123, Peoples R China
[2] Beijing Res Inst Chem Ind China Petr & Chem Corp, Beijing 100013, Peoples R China
[3] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
CsPbI3; dopant-free; hole transport layers; perovskite solar cells; PM6; LOW-COST;
D O I
10.1002/smll.202206952
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2 ',7,7 '-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9 '-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N-2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain approximate to 80% of the initial PCE under the same conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells
    Kim, Guan-Woo
    Kang, Gyeongho
    Kim, Jinseck
    Lee, Gang-Young
    Kim, Hong Il
    Pyeon, Limok
    Lee, Jaechol
    Park, Taiho
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) : 2326 - 2333
  • [2] Dopant-Free π-Conjugated Hole Transport Materials for Highly Stable and Efficient Perovskite Solar Cells
    Deng, Zhifeng
    Cui, Shuaiwei
    Kou, Kaichang
    Liang, Dongxu
    Shi, Xin
    Liu, Jinhui
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [3] Dopant-free benzothiadiazole bridged hole transport materials for highly stable and efficient perovskite solar cells
    Zhou, Xiang
    Kong, Fantai
    Sun, Yuan
    Huang, Yin
    Zhang, Xianxi
    Ghadari, Rahim
    DYES AND PIGMENTS, 2020, 173
  • [4] A dopant-free polymer as hole-transporting material for highly efficient and stable perovskite solar cells
    Li, Xianqiang
    Tang, Xiaohong
    Yang, Yijie
    Ye, Tao
    Wu, Dan
    Wang, Hong
    Li, Jun
    Wang, Xizu
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (12): : 994 - 1002
  • [5] A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells
    In-Bok Kim
    Yeon-Ju Kim
    Dong-Yu Kim
    Soo-Young Jang
    Macromolecular Research, 2022, 30 : 391 - 396
  • [6] A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells
    Kim, In-Bok
    Kim, Yeon-Ju
    Kim, Dong-Yu
    Jang, Soo-Young
    MACROMOLECULAR RESEARCH, 2022, 30 (06) : 391 - 396
  • [7] Dopant-Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules
    Liu, Cheng
    Igci, Cansu
    Yang, Yi
    Syzgantseva, Olga A.
    Syzgantseva, Maria A.
    Rakstys, Kasparas
    Kanda, Hiroyuki
    Shibayama, Naoyuki
    Ding, Bin
    Zhang, Xianfu
    Jankauskas, Vygintas
    Ding, Yong
    Dai, Songyuan
    Dyson, Paul J.
    Nazeeruddin, Mohammad Khaja
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (37) : 20489 - 20497
  • [8] Dopant-Free Hole-Transporting Materials for Stable and Efficient Perovskite Solar Cells
    Paek, Sanghyun
    Qin, Peng
    Lee, Yonghui
    Cho, Kyung Taek
    Gao, Peng
    Grancini, Giulia
    Oveisi, Emad
    Gratia, Paul
    Rakstys, Kasparas
    Al-Muhtaseb, Shaheen A.
    Ludwig, Christian
    Ko, Jaejung
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2017, 29 (35)
  • [9] Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells
    Zhang, Fei
    Zhao, Xiaoming
    Yi, Chenyi
    Bi, Dongqin
    Bi, Xiangdong
    Wei, Peng
    Liu, Xicheng
    Wang, Shirong
    Li, Xianggao
    Zakeeruddin, Shaik Mohammed
    Gratzel, Michael
    DYES AND PIGMENTS, 2017, 136 : 273 - 277
  • [10] Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells
    Zhang, Fuguo
    Yao, Zhaoyang
    Guo, Yaxiao
    Li, Yuanyuan
    Bergstrand, Jan
    Brett, Calvin J.
    Cai, Bin
    Hajian, Alireza
    Guo, Yu
    Yang, Xichuan
    Gardner, James M.
    Widengren, Jerker
    Roth, Stephan V.
    Kloo, Lars
    Sun, Licheng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (50) : 19700 - 19707