Python']Python Data Driven framework for acceleration of Phase-Field simulations

被引:1
|
作者
Fetni, Seifallah [1 ]
Delahaye, Jocelyn [1 ]
Habraken, Anne Marie [1 ]
机构
[1] Univ Liege, UEE Res Unit, Liege, Belgium
关键词
!text type='Python']Python[!/text] development; Deep learning; Image generation and processing; LSTM; PCA;
D O I
10.1016/j.simpa.2023.100563
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The passage describes the development of a numerical framework in Python to create and process a large dataset for time-series prediction using Deep Learning algorithms. The dataset is generated by solving the Cahn-Hilliard equation for spinodal decomposition of a binary alloy and is labeled to train the algorithms. Prior to training, dimensionality reduction is performed using Auto-encoders and Principal Component Analysis. The framework identifies three distinct latent dimensions/spaces for the datasets. The primary dataset was generated by running up to 10,000 High-Fidelity Phase-Field simulations in parallel using High-Performance Computing (HPC). The framework is compatible with all major operating systems and has been thoroughly tested on Python 3.7 and later versions.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Introducing GPU Acceleration into the Python']Python-Based Simulations of Chemistry Framework
    Li, Rui
    Sun, Qiming
    Zhang, Xing
    Chan, Garnet Kin-Lic
    JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (05): : 1459 - 1468
  • [2] PYSCF: the Python']Python-based simulations of chemistry framework
    Sun, Qiming
    Berkelbach, Timothy C.
    Blunt, Nick S.
    Booth, George H.
    Guo, Sheng
    Li, Zhendong
    Liu, Junzi
    McClain, James D.
    Sayfutyarova, Elvira R.
    Sharma, Sandeep
    Wouters, Sebastian
    Chan, Garnet Kin-Lic
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (01)
  • [3] A Python']Python framework for microphone array data processing
    Sarradj, Ennes
    Herold, Gert
    APPLIED ACOUSTICS, 2017, 116 : 50 - 58
  • [4] Data-Intensive Computing Acceleration with Python']Python in Xilinx FPGA
    Yang, Yalin
    Xu, Linjie
    Xu, Zichen
    Wang, Yuhao
    DATA QUALITY AND TRUST IN BIG DATA, 2019, 11235 : 111 - 124
  • [5] Enhancing GPU-Acceleration in the Python']Python-Based Simulations of Chemistry Frameworks
    Wu, Xiaojie
    Sun, Qiming
    Pu, Zhichen
    Zheng, Tianze
    Ma, Wenzhi
    Yan, Wen
    Xia, Yu
    Wu, Zhengxiao
    Huo, Mian
    Li, Xiang
    Ren, Weiluo
    Gong, Sheng
    Zhang, Yumin
    Gao, Weihao
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2025, 15 (02)
  • [6] Augmenting Explainable Data-Driven Models in Energy Systems: A Python']Python Framework for Feature Engineering
    Wilfling, Sandra
    MACHINE LEARNING FOR CYBER-PHYSICAL SYSTEMS, ML4CPS 2023, 2024, : 121 - 129
  • [7] PRMS-Python']Python: A Python']Python framework for programmatic PRMS modeling and access to its data structures
    Volk, John M.
    Turner, Matthew A.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 114 : 152 - 165
  • [8] Pymote 2.0: Development of an Interactive Python']Python Framework for Wireless Network Simulations
    Shahzad, Farrukh
    IEEE INTERNET OF THINGS JOURNAL, 2016, 3 (06): : 1182 - 1188
  • [9] PyRates-A Python']Python framework for rate-based neural simulations
    Gast, Richard
    Rose, Daniel
    Salomon, Christoph
    Moeller, Harald E.
    Weiskopf, Nikolaus
    Knoesche, Thomas R.
    PLOS ONE, 2019, 14 (12):
  • [10] SimPrily: A Python']Python framework to simplify high-throughput genomic simulations
    Gladstein, Ariella L.
    Quinto-Cortes, Consuelo D.
    Pistorius, Julian L.
    Christy, David
    Gantner, Logan
    Joyce, Blake L.
    SOFTWAREX, 2018, 7 : 335 - 340