Purpose Obesity and a high body mass index (BMI) are considered as risk factors for abdominal wall hernia (AWH). However, anthropometric measures of body fat distribution (BFD) seem to be better indicators in the hernia field. This Mendelian randomization analysis aimed to generate more robust evidence for the impact of waist circumstance (WC), body, trunk, arm, and leg fat percentages (BFP, TFP, AFP, LFP) on AWH. Methods A univariable MR design was employed and the summary statistics allowing for assessment were obtained from the genome-wide association studies (GWASs). An inverse variance weighted (IVW) method was applied as the primary analysis, and the odds ratio value was used to evaluate the causal relationship between BFD and AWH. Results None of the MR-Egger regression intercepts deviated from null, indicating no evidence of horizontal pleiotropy (p > 0.05). The Cochran Q test showed heterogeneity between the genetic IVs for WC (p = 0.005; p = 0.005), TFP (p < 0.001; p < 0.001), AFP-L (p = 0.016; p = 0.015), LFP-R (p = 0.012; p = 0.009), and LFP-L (p < 0.001; p < 0.001). Taking the IVW random-effects model as gold standard, each standard deviation increment in genetically determined WC, BFP, TFP, AFP-R, AFP-L, LFP-R, and LFP-L raised the risk of AWH by 70.9%, 70.7%, 56.5%, 69.7%, 78.3%, 87.7%, and 72.5%, respectively. Conclusions This study proves the causal relationship between AWH and BFD, attracting more attention from BMI to BFD. It provides evidence-based medical evidence that healthy figure management can prevent AWH.