Arbuscular Mycorrhizal Fungi Associated with Maize (Zea mays L.) in the Formation and Stability of Aggregates in Two Types of Soil

被引:5
|
作者
Gomez-Leyva, Juan Florencio [1 ]
Segura-Castruita, Miguel Angel [1 ]
Hernandez-Cuevas, Laura Veronica [1 ]
Iniguez-Rivas, Mayra [1 ,2 ]
机构
[1] Tecnol Nacl Mexico, Inst Tecnol Tlajomulco, Div Estudios Posgrad & Invest, Tlajomulco De Zuniga 45640, Mexico
[2] Ciencias Agrobiotecnol, Tlajomulco De Zuniga 45640, Mexico
关键词
Claroideoglomus claroideum; Rhizophagus aggregatus; soil classification; COMMUNITIES; INOCULATION; GROWTH; HOST; MICROORGANISMS; MANAGEMENT; DIVERSITY; SINGLE; PLANTS; ROOTS;
D O I
10.3390/microorganisms11112615
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Knowledge of native Arbuscular Mycorrhizal Fungi (AMF) and their relationship with the edaphic characteristics where they live is important to establish the influence of allochthonous AMF, which were inoculated, on the development and stability of soil aggregates. The objectives of this research were to know the composition of native AMF species from two contrasting soils, and to establish the development and stability of aggregates in those soils with corn plants after inoculating them with allochthonous AMF. The experiment had three factors: Soil (two levels [S1 and S2]), HMA (three levels: without application [A0], with the application of Claroideoglomus claroideum [A1] and with the application of a consortium [A2]) and Fertilization (two levels (without fertilization [f0] and with fertilization [f1])). Twelve treatments were generated, with five replicates (60 experimental units [EU]). The EU consisted of a pot with a corn plant and the distribution was completely random. The results demonstrated that the Typic Ustifluvent presented nine species of native AMF, while the Typic Dystrustert had three; the native AMF in each soil influenced the activity of allochthonous AMF, such as their colonization and sporulation. Likewise, differences were found in the stability of macro-sized aggregates (0.5 to 2.0 mm).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] CORN (ZEA MAYS L.) GROWTH AS AFFECTED BY SOIL COMPACTION AND ARBUSCULAR MYCORRHIZAL FUNGI
    Miransari, M.
    JOURNAL OF PLANT NUTRITION, 2013, 36 (12) : 1853 - 1867
  • [2] Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils
    Guo, Wei
    Zhao, Renxin
    Fu, Ruiying
    Bi, Na
    Wang, Lixin
    Zhao, Wenjing
    Guo, Jiangyuan
    Zhang, Jun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (05) : 3592 - 3603
  • [3] Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils
    Wei Guo
    Renxin Zhao
    Ruiying Fu
    Na Bi
    Lixin Wang
    Wenjing Zhao
    Jiangyuan Guo
    Jun Zhang
    Environmental Science and Pollution Research, 2014, 21 : 3592 - 3603
  • [4] Effect of Arbuscular Mycorrhizal Fungi on Growth and Development of Zea Mays L.
    Deshmukh, R. B.
    Mane, S. G.
    Phatake, Y. B.
    Marathe, R. J.
    Dange, S. S.
    Shinde, B. P.
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2023, 18 (07): : 16 - 22
  • [5] Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.)
    Hui Tian
    Rhae A. Drijber
    Xiaolin Li
    Daniel N. Miller
    Brian J. Wienhold
    Mycorrhiza, 2013, 23 : 507 - 514
  • [6] ENHANCEMENT IN ARSENIC REMEDIATION BY MAIZE (ZEA MAYS L.) USING EDTA IN COMBINATION WITH ARBUSCULAR MYCORRHIZAL FUNGI
    Wang, S.
    Pan, S.
    Shah, G. M.
    Zhang, Z.
    Yang, L.
    Yang, S.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (05): : 5987 - 5999
  • [7] Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi
    Liu, Lingzhi
    Gong, Zongqiang
    Zhang, Yulong
    Li, Peijun
    ECOTOXICOLOGY, 2014, 23 (10) : 1979 - 1986
  • [8] Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi
    Lingzhi Liu
    Zongqiang Gong
    Yulong Zhang
    Peijun Li
    Ecotoxicology, 2014, 23 : 1979 - 1986
  • [9] Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.)
    Tian, Hui
    Drijber, Rhae A.
    Li, Xiaolin
    Miller, Daniel N.
    Wienhold, Brian J.
    MYCORRHIZA, 2013, 23 (06) : 507 - 514
  • [10] Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study
    Cao, Jiling
    Feng, Youzhi
    He, Shiying
    Lin, Xiangui
    APPLIED SOIL ECOLOGY, 2017, 119 : 307 - 316