Gut microbiota of Suncus murinus, a naturally obesity-resistant animal, improves the ecological diversity of the gut microbiota in high-fat-diet-induced obese mice

被引:3
|
作者
Zhang, Mingshou [1 ]
Yang, Ting [1 ]
Li, Rujia [1 ]
Ren, Ke [2 ]
Li, Jun [3 ]
He, Maozhang [4 ]
Chen, Juefei [1 ]
Yi, Shuang-Qin [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Human Hlth Sci, Dept Frontier Hlth Sci, Tokyo, Japan
[2] Qujing Normal Univ, Fac Phys Educ, Qujing, Yun Nan, Peoples R China
[3] Shanghai Jiao Tong Univ, Ren Ji Hosp, Shanghai Canc Inst, Sch Med,State Key Lab Oncogenes & Related Genes, Shanghai, Peoples R China
[4] Anhui Med Univ, Sch Basic Med Sci, Dept Microbiol, Hefei, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 11期
关键词
HOUSE MUSK SHREW; SURGICAL ANATOMY; INSULIN-RESISTANCE; INNERVATION; TRANSPLANTATION; PANCREAS;
D O I
10.1371/journal.pone.0293213
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background The global population of obese individuals is increasing, affecting human health. High-fat diets are a leading cause of this epidemic, and animal models, such as mice, are often used in related research. Obese individuals have a different gut microbiota composition from non-obese ones, characterized by a sizeable population of certain bacteria associated with fat storage. The gut microbiome plays a significant role in regulating human physiological and metabolic functions. Links between obesity, high-fat diets and gut microbiota have become hot topics of discussion. Recently, research on the modulation of the gut microbiota has focused on fecal microbiota transplantation (FMT), which has been recognized as an effective method of studying the function of gut microbiota. Objectives The purpose of this study was to investigate how the gut microbiota of Suncus murinus, a naturally obesity-resistant animal, through FMT, affected the ecology of the gut microbiota of high-fat diet induced obese mice. Methods In this study, Suncus murinus was used as a donor for FMT. High-fat diet induced C57BL/6NCrSIc mice were used as recipients, the body weight changes were measured and changes in their gut flora were analyzed using a 16S rRNA gene analysis. Results The study found that, after the FMT procedure, the FMT group tended to have a lower body weight than the control group. At the phylum level, the most predominant phyla in all groups were Firmicutes and Proteobacteria, while Deferribacteres was not detected in the FMT or antibiotic administration groups, and Bacteroidetes was not present in the antibiotic administration group. At the genus level, the FMT group had significantly lower OTU richness than the control group but greater diversity than the control group. Conclusions These results indicate that FMT from Suncus murinus can help reorganize and improve the gut microbiota of mice in a balanced and diverse ecosystem.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice
    Jin, Zhibo
    Liu, Meihong
    Zhao, Hongyu
    Xie, Jiahan
    Yin, Wandi
    Zheng, Mingzhu
    Cai, Dan
    Liu, Huimin
    Liu, Jingsheng
    FOODS, 2024, 13 (21)
  • [2] Chondroitin Sulfate Alleviated Obesity by Modulating Gut Microbiota and Liver Metabolome in High-Fat-Diet-Induced Obese Mice
    Gao, Ruichang
    Qi, Zexiu
    Lin, Jie
    Wang, Ge
    Chen, Ge
    Yuan, Li
    Sun, Quancai
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (24) : 9419 - 9428
  • [3] Distinct Gut Microbiota and Arachidonic Acid Metabolism in Obesity-Prone and Obesity-Resistant Mice with a High-Fat Diet
    Zhang, Huixia
    Chen, Shiqi
    Yang, Liu
    Zhang, Shuai
    Qin, Linqian
    Jiang, Haiyang
    NUTRIENTS, 2024, 16 (11)
  • [4] Effects of Soluble and Insoluble Fibre on Glycolipid Metabolism and Gut Microbiota in High-Fat-Diet-Induced Obese Mice
    Ren, Han
    Dong, Sihao
    Li, Li
    Zhao, Wei
    NUTRIENTS, 2024, 16 (22)
  • [5] Honokiol Ameliorates High-Fat-Diet-Induced Obesity of Different Sexes of Mice by Modulating the Composition of the Gut Microbiota
    Ding, Yanan
    Song, Zehe
    Li, Hao
    Chang, Ling
    Pan, Tingli
    Gu, Xueling
    He, Xi
    Fan, Zhiyong
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [6] Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Liu, Zhuoqun
    Wang, Ningning
    Ma, Yanan
    Wen, Deliang
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [7] Suppression of high-fat-diet-induced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota
    Chen, Si
    Yang, Mengyi
    Wang, Rui
    Fan, Xiuqin
    Tang, Tiantian
    Li, Ping
    Zhou, Xinhui
    Qi, Kemin
    EUROPEAN JOURNAL OF NUTRITION, 2022, 61 (04) : 2015 - 2031
  • [8] Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota
    Shi, Xin'e
    Zhou, Xiaomin
    Chu, Xinyi
    Wang, Jie
    Xie, Baocai
    Ge, Jing
    Guo, Yuan
    Li, Xiao
    Yang, Gongshe
    NUTRIENTS, 2019, 11 (12)
  • [9] Suppression of high-fat-diet-induced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota
    Si Chen
    Mengyi Yang
    Rui Wang
    Xiuqin Fan
    Tiantian Tang
    Ping Li
    Xinhui Zhou
    Kemin Qi
    European Journal of Nutrition, 2022, 61 : 2015 - 2031
  • [10] Extract of the Microalga Nitzschia laevis Prevents High-Fat-Diet-Induced Obesity in Mice by Modulating the Composition of Gut Microbiota
    Guo, Bingbing
    Liu, Bin
    Wei, Hehong
    Cheng, Ka-Wing
    Chen, Feng
    MOLECULAR NUTRITION & FOOD RESEARCH, 2019, 63 (03)