Chemodiversity of organic nitrogen emissions from light-duty gasoline vehicles is governed by engine displacements and driving speed

被引:0
|
作者
Han, Huixia [1 ,2 ]
Du, Hongxuan [1 ]
Chen, Shuang [1 ]
Xu, Yisheng [1 ,2 ]
Ren, Lihong [1 ]
Chen, Yu [2 ]
Cai, Yeguang [2 ]
Wang, Kexin [2 ]
Yang, Xinping [3 ]
Fu, Mingliang [3 ]
Ding, Yan [3 ]
Fu, Pingqing [4 ]
机构
[1] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[2] Chinese Res Acad Environm Sci Environm Technol & E, China Acad Environm Sci, Beijing 100012, Peoples R China
[3] Chinese Res Inst Environm Sci, State Environm Protect Key Lab Vehicle Emiss Contr, Beijing 100012, Peoples R China
[4] Tianjin Univ, Sch Earth Syst Sci, Inst Surface Earth Syst Sci, Tianjin 300072, Peoples R China
关键词
Vehicle emissions; Organic nitrogen; FT-ICR MS; Molecular composition; Light-duty gasoline vehicles (LDGVs); Oxidation process; AEROSOL FORMATION; SULFURIC-ACID; MOLECULAR CHARACTERIZATION; CHEMICAL EVOLUTION; NO3; OXIDATION; ALPHA-PINENE; MASS; CARBON; IDENTIFICATION; MATTER;
D O I
10.1016/j.scitotenv.2024.170792
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Organic nitrogen emissions from light -duty gasoline vehicles (LDGVs) is believed to play a pivotal role in atmospheric particulate matter (PM) in urban environments. Here, the characterization of organic nitrogen emitted by LDGVs with varying engine displacements at different speed phases was analyzed using a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at molecular level. For the LDGV with small engine displacements, the nitrogen -containing organic (CHON) compounds exhibit higher abundance, molecular weight, oxygen content and aromaticity in the extra -high-speed phase. Conversely, for the LDGV with big engine displacements, more CHON compounds with elevated abundance, molecular weight, oxygen content and aromaticity were observed in the low -speed phase. Our study assumed that the formation of CHON compounds emitted from LDGVs is mainly the oxidation reaction during fuel combustion, so the potential precursor -product pairs related to oxidation process were used to study the degree of combustion reaction. The results show that the highest proportion of oxidation occurs during extra -high-speed phase for LDGV with small engine displacements, and during low -speed phase for LDGV with big engine displacements. These results offer a novel perspective for comprehending the mechanism behind vehicle emissions formation and contribute valuable insights for crafting effective air pollution regulations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Chemodiversity of organic nitrogen emissions from light-duty gasoline vehicles is governed by engine displacements and driving speed
    Han, Huixia
    Du, Hongxuan
    Chen, Shuang
    Xu, Yisheng
    Ren, Lihong
    Chen, Yu
    Cai, Yeguang
    Wang, Kexin
    Yang, Xinping
    Fu, Mingliang
    Ding, Yan
    Fu, Pingqing
    Science of the Total Environment, 2024, 920
  • [2] Characterizing the particle number emissions of light-duty gasoline vehicles under different engine technologies and driving conditions
    Yu, Fei
    Zhong, Zhuangmin
    Wang, Qun
    Liao, Songdi
    Zhu, Manni
    Sha, Qing'e
    Liu, Junwen
    Zheng, Junyu
    ENVIRONMENTAL RESEARCH, 2022, 213
  • [3] Research on ammonia emissions characteristics from light-duty gasoline vehicles
    Yingshuai Liu
    Yunshan Ge
    Jianwei Tan
    Haili Wang
    Yan Ding
    Journal of Environmental Sciences, 2021, (08) : 182 - 193
  • [4] Characteristics of driving and on-road emissions of light-duty gasoline vehicles in Chinese cities
    He, Kebin
    Yao, Zhiliang
    Huo, Hong
    Wang, Qidong
    Ma, Yongliang
    Zhang, Qiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [5] Research on ammonia emissions characteristics from light-duty gasoline vehicles
    Liu, Yingshuai
    Ge, Yunshan
    Tan, Jianwei
    Wang, Haili
    Ding, Yan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2021, 106 : 182 - 193
  • [6] Particle number emissions from light-duty gasoline vehicles in Beijing, China
    Shen, Xianbao
    Shi, Yue
    Kong, Lei
    Cao, Xinyue
    Li, Xin
    Wu, Bobo
    Yao, Xiaolong
    Yao, Zhiliang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 773
  • [7] Analysis of of real driving gaseous emissions from light-duty diesel vehicles
    Chong, Hwan S.
    Park, Yonghee
    Kwon, Sangil
    Hong, Youdeog
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2018, 65 : 485 - 499
  • [8] PM2.5 emissions from light-duty gasoline vehicles in Beijing, China
    Shen, Xianbao
    Yao, Zhiliang
    Huo, Hong
    He, Kebin
    Zhang, Yingzhi
    Liu, Huan
    Ye, Yu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 487 : 521 - 527
  • [9] A Pilot Study of Fuel Impacts on PM Emissions from Light-Duty Gasoline Vehicles
    Sobotowski, Rafal A.
    Butler, Aron D.
    Guerra, Zuimdie
    SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2015, 8 (01) : 214 - 233
  • [10] Characterization of ammonia emissions from light-duty gasoline vehicles based on real-world driving and dynamometer measurements
    Wu, Lili
    Yu, Fei
    Luo, Haoming
    Zhu, Manni
    Liao, Songdi
    Liu, Junwen
    Wu, Changda
    Horchler, Eva Johanna
    Ristovski, Zoran
    Zheng, Junyu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 929